We defined two distinct maturational compartments (proliferative and secretory) of osteogenic cells in vivo on the basis of ALP activity, BrdU incorporation, cell shape, and BSP production. BSP immunoreactivity was found to mark cells in the secretory but not in the proliferative compartment. We established the phenotypic similarity of primitive marrow stromal cells with proliferating perichondral cells (fibroblast-like, ALP+, BrdU+, BSP-). This suggests the potential functional equivalence of the two cell types as committed non-secretory osteogenic cells and points to the duality of osteogenic cell compartments as a generalized feature of bone formation. We further showed that although BSP secretion is a hallmark of the onset of osteogenesis, BSP antigenicity is lost both in osteoid and in a large proportion of mature osteoblasts during subsequent phases of bone deposition. This suggests that bone formation may not be a uniform event, as bone cells actually deposit antigenically, and likely biochemically, distinct matrices at specific times.

Download full-text PDF

Source
http://dx.doi.org/10.1177/41.2.8419458DOI Listing

Publication Analysis

Top Keywords

bsp secretion
8
osteogenic cells
8
bone formation
8
cells
6
bone
5
bsp
5
bone sialoprotein
4
sialoprotein bsp
4
secretion osteoblast
4
osteoblast differentiation
4

Similar Publications

Polyetheretherketone (PEEK) is widely used in orthopedic and dental implants due to its excellent mechanical properties, chemical stability, and biocompatibility. However, its inherently bioinert nature makes it present weak osteogenic activity, which greatly restricts its clinical adoption. Herein, strontium (Sr) is incorporated onto the surface of PEEK using mussel-inspired polydopamine coating to improve its osteogenic activity.

View Article and Find Full Text PDF

Bioactive glass 45S5 promotes odontogenic differentiation of apical papilla cells through autophagy.

Hua Xi Kou Qiang Yi Xue Za Zhi

February 2025

Dept. of Cariology and Endodontics, Binzhou Medical University Hospital, Binzhou 256600, China.

Objectives: The mechanism of the odontogenic differentiation of apical papillary cells (APCs) stimulated by bioactive glass 45S5 is still unclear. This study aims to investigate the effect of autophagy on the odontogenic differentiation of APCs stimulated by bioactive glass 45S5.

Methods: APCs were isolated and cultured , and the cell origin was identified by flow cytometry.

View Article and Find Full Text PDF

Blepharospasm (BSP) is a common focal movement disorder linked to the basal ganglia and plasma catecholamines (CAs). This study aimed to analyze clinical characteristics of BSP patients and explore the relationship with plasma CAs. Clinical characteristics, clinician-rated scales, and plasma CAs were recorded, including dopamine (DA), 3-methoxytyramine (3-MT), and the 3-MT/DA ratio.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a malignant tumour that poses a serious threat to human health and places a heavy burden on individuals and society. However, the role of GPC1 in the malignant progression of HCC is unknown. In this study, we analysed the expression of GPC1 in HCC, and its association with poor patient prognosis.

View Article and Find Full Text PDF

Biodegradable semiconducting polymer nanoparticles for phototheranostics.

J Mater Chem B

January 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Semiconducting polymer nanoparticles (SPNs) have been widely applied for phototheranostics. However, the disadvantage of long-term metabolism greatly suppresses the clinical application of SPNs. To improve the metabolic rate and minimize the long-term toxicity of SPNs, biodegradable semiconducting polymers (BSPs), whose backbones may be degraded under certain conditions, have been designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!