Virulent Yersinia species harbor a common plasmid that encodes essential virulence determinants (Yersinia outer proteins [Yops]), which are regulated by the extracellular stimuli Ca2+ and temperature. The V-antigen-encoding operon has been shown to be involved in the Ca(2+)-regulated negative pathway. The genetic organization of the V-antigen operon and the sequence of the lcrGVH genes were recently presented. The V-antigen operon was shown to be a polycistronic operon having the gene order lcrGVH-yopBD (T. Bergman, S. Håkansson, A. Forsberg, L. Norlander, A. Macellaro, A. Bäckman, I. Bölin, and H. Wolf-Watz, J. Bacteriol. 173:1607-1616, 1991; S. B. Price, K. Y. Leung, S. S. Barve, and S. C. Straley, J. Bacteriol. 171:5646-5653, 1989). We present here the sequence of the distal part of the V-antigen operons of Yersinia pseudotuberculosis and Yersinia enterocolitica. The sequence information encompasses the yopB and yopD genes and a downstream region in both species. We conclude that the V-antigen operon ends with the yopD gene. This conclusion is strengthened by the observation of an insertion-like element downstream of the yopD gene. The translational start codons of YopB and YopD have been identified by N-terminal amino acid sequencing. By computer analysis, the yopB and yopD gene products were found to be possible transmembrane proteins, and YopD was shown to contain an amphipathic alpha-helix in its carboxy terminus. These findings contrast with the general globular pattern observed for other Yops. Homology between Yersinia LcrH and Shigella flexneri IppI and between Yersinia YopB and S. flexneri IpaB was found, suggesting conservation of this locus between these two genera. YopB was also found to have a moderate level of homology, especially within the hydrophobic regions, to members of the RTX protein family of alpha-hemolysins and leukotoxins, indicating that YopB might exhibit a similar function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC302689 | PMC |
http://dx.doi.org/10.1128/iai.61.1.71-80.1993 | DOI Listing |
Virulence
December 2023
Department of Molecular Biology, Umeå University, Umeå, Sweden.
PLoS Pathog
May 2022
Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
Yersinia enterocolitica employs a type three secretion system (T3SS) to translocate immunosuppressive effector proteins into host cells. To this end, the T3SS assembles a translocon/pore complex composed of the translocator proteins YopB and YopD in host cell membranes serving as an entry port for the effectors. The translocon is formed in a Yersinia-containing pre-phagosomal compartment that is connected to the extracellular space.
View Article and Find Full Text PDFMethods Mol Biol
March 2020
Department of Molecular Biology, Umeå University, Umeå, Sweden.
Many Gram-negative pathogens produce a type III secretion system capable of intoxicating eukaryotic cells with immune-modulating effector proteins. Fundamental to this injection process is the prior secretion of two translocator proteins destined for injectisome translocon pore assembly within the host cell plasma membrane. It is through this pore that effectors are believed to travel to gain access to the host cell interior.
View Article and Find Full Text PDFInfect Immun
October 2017
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
Gram-negative bacterial pathogens utilize virulence-associated secretion systems to inject, or translocate, effector proteins into host cells to manipulate cellular processes and promote bacterial replication. However, translocated bacterial products are sensed by ucleotide binding domain and eucine-rich epeat-containing proteins (NLRs), which trigger the formation of a multiprotein complex called the inflammasome, leading to secretion of interleukin-1 (IL-1) family cytokines, pyroptosis, and control of pathogen replication. Pathogenic bacteria inject effector proteins termed Yops, as well as pore-forming proteins that comprise the translocon itself, into target cells.
View Article and Find Full Text PDFIntroduction: Proper analysis of the human immune response is crucial in the laboratory diagnosis of many bacterial infections-The current serological diagnosis of yersiniosis often is carried out using ELISA with native antigens. However, recombinant proteins increase the specificity of the serological assays, particularly in patients with chronic, non- specific infections. The aim of the present study was to evaluate the usefulness of in-house obtained recombinant proteins Yop of Yersinia enterocolitica as highly specific antigens in ELISA and recom-dot performed in the serodiagnosis of yersiniosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!