The GEO colon carcinoma cell line is weakly tumorigenic in athymic mice and shows differentiated properties both in tissue culture and in xenografts. Proliferating monolayer cultures of GEO cells which normally require exogenous epidermal growth factor (EGF) for optimal growth displayed a marked inhibition in growth upon addition of antibodies that block binding to the EGF receptor or neutralize TGF-alpha. These results indicated that GEO cells utilize TGF-alpha in a weak autocrine loop. The availability of a weakly malignant model system in which TGF-alpha had demonstrable, but low level autocrine activity, permitted the investigation of the role of TGF-alpha in tumorigenesis by generating a stronger autocrine loop through the overexpression of the polypeptide. GEO cells were electroporated with an expression vector containing the human TGF-alpha cDNA, and stable clones were isolated that constitutively expressed the TGF-alpha cDNA in a strong autocrine loop. However, the growth rate of the parental cells in EGF-supplemented medium was the same as that of transfected cells with or without growth factor-supplemented medium. Thus, any biological changes generated by the overexpression of TGF-alpha were due to the autocrine nature of the growth mechanism rather than due to any decrease in doubling time leading to a faster growth rate. Transfected GEO cells showed an increase in anchorage-independent growth and formed tumors more readily in athymic nude mice indicating that TGF-alpha plays a role in progression of transformed properties.
Download full-text PDF |
Source |
---|
Minerva Dent Oral Sci
January 2025
Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
Background: Boswellic acid (BA) is a bioactive compound derived from Boswellia trees. This study aims to investigate the anti-cancer properties of BA against KB oral squamous cancer cells and elucidate the underlying mechanisms.
Methods: Escalating doses of BA were administered to KB cells, and various analyses were conducted using bioinformatic tools such as GEO, GEO2R, and STITCH database.
Thorac Cancer
January 2025
Department of Thoracic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
Background: Our study aimed to explore the specific functions and potential mechanisms of miR-224-5p in non-small cell lung cancer (NSCLC).
Methods: We first analyzed the expression of miR-224-5p in NSCLC patients and cell lines through the GEO database and qRT-PCR analysis. Then, we used MTT assays, wound healing assays, Transwell assays, and western blotting to evaluate the effects of miR-224-5p on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT).
Front Immunol
January 2025
Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
Object: We aim to explore the immunomodulatory properties of T cells on different titanium nanotubes and the key immunological factors involved in this process.
Methods: Transcriptome data from GEO database of healthy people and healthy implants were used to analyze cell infiltration and factor distribution of adaptive immune using bioinformatics tools. T cells from activated rat were cultured on titanium nanotubes that were prepared by anodization with different diameters (P-0, NT15-30 nm, NT40-100 nm, NT70-200 nm).
Front Med (Lausanne)
January 2025
Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
Background: The lysosome plays a vitally crucial role in tumor development and is a major participant in the cell death process, involving aberrant functional and structural changes. However, there are few studies on lysosome-associated genes (LAGs) in lung adenocarcinoma (LUAD).
Methods: Bulk RNA-seq of LUAD was downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO).
J Inflamm Res
January 2025
Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
Background: Autophagy and immunity play important regulatory roles in lung developmental disorders. However, there is currently a lack of bioinformatics analysis on autophagy-related genes (ARGs) and immune infiltration in bronchopulmonary dysplasia (BPD). We aim to screen and validate the signature genes of BPD by bioinformatics and in vivo experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!