The extracellular signal-regulated kinase ERK2, a member of the protein kinase superfamily, phosphorylates a variety of cellular proteins in response to extracellular signals. ERK2 expressed in Escherichia coli as a fusion protein with the sequence Ala-His6 at the N terminus has low basal activity and very low levels of phosphate incorporation, but can be fully activated. The Ala-His6 ERK2 as expressed in the unphosphorylated form has been crystallized in space group P2(1). The cell constants are a = 49.32 A, b = 71.42 A, c = 61.25 A, and beta = 109.75 degrees, and the crystals diffract to better than 1.8 A resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.1993.1532DOI Listing

Publication Analysis

Top Keywords

extracellular signal-regulated
8
erk2 expressed
8
crystallization preliminary
4
preliminary x-ray
4
x-ray studies
4
studies extracellular
4
signal-regulated kinase-2/map
4
kinase-2/map kinase
4
kinase incorporated
4
incorporated his-tag
4

Similar Publications

Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).

Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.

View Article and Find Full Text PDF

Microtubule associated protein 2 (MAP2) interacts with the regulatory protein 14-3-3ζ in a cAMP-dependent protein kinase (PKA) phosphorylation dependent manner. Using selective phosphorylation, calorimetry, nuclear magnetic resonance, chemical crosslinking, and X-ray crystallography, we characterized interactions of 14-3-3ζ with various binding regions of MAP2c. Although PKA phosphorylation increases the affinity of MAP2c for 14-3-3ζ in the proline rich region and C-terminal domain, unphosphorylated MAP2c also binds the dimeric 14-3-3ζ via its microtubule binding domain and variable central domain.

View Article and Find Full Text PDF

Background/aims: MOTS-c belongs to a group of mitochondrial peptides involved in metabolic processes in the body. This peptide has garnered increasing attention since its discovery in 2015 because of its potential to ameliorate metabolic parameters in animals with diabetes or insulin resistance. MOTS-c is involved in muscle metabolism; however, little is known about its role in fiber differentiation.

View Article and Find Full Text PDF

In our research, we constructed models of renal ischemia-reperfusion (I/R)-exposed acute kidney injury (AKI) and unilateral ureteral obstruction (UUO)-stimulated renal fibrosis (RF) in C57BL/6 mice and HK-2 cells. We firstly authenticated that oral pinocembrin (PIN) administration obviously mitigated tissue damage and renal dysfunction induced by I/R injury, and PIN attenuated UUO-caused RF, as confirmed by the reduced expression of fibrotic markers as well as hematoxylin-eosin (H&E), Sirius red, immunohistochemistry, and Masson staining. Meanwhile, the beneficial role of PIN was again demonstrated in HK-2 cells with hypoxia-reoxygenation (H/R) or transforming growth factor beta-1 (TGF-β1) treatment.

View Article and Find Full Text PDF

Stress is linked to oxidative imbalance, neuroendocrine system malfunction, and cognitive dysfunction. It is a recognized cause of neuropsychiatric diseases. Natural flavonoid apigenin (API) has neuroprotective and antidepressant properties, but little is known about its potential in restoring memory function under stress-related circumstances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!