Biological monitoring for pesticide exposure--the role of human volunteer studies.

Int Arch Occup Environ Health

Human Toxicology Team, ZENECA Central Toxicology Laboratory, Macclesfield, Cheshire, UK.

Published: October 1993

Predictions of human pesticide metabolism which are needed for the interpretation of biological monitoring data are frequently made from animal studies. Consequently, assumptions have to be made about the relationship between absorbed dose and metabolite excretion. The results from two human volunteer studies highlight the problems associated with extrapolating from animal studies in this way. The pyrethroid insecticide cypermethrin shows markedly different metabolite patterns when administered orally or dermally in man. Following dermal dosing the ratio of trans/cis cyclopropane acids is approximately 1:1, compared to 2:1 after oral administration. The ratio of total cyclopropane acids to phenoxybenzoic acids also differs depending on the route (dermal 1:4, oral 1:0.8). A knowledge of human metabolism by these two routes enables a much more meaningful interpretation of biological monitoring measurements. The herbicide molinate forms a mercapturate conjugate as a major urinary metabolite in the rat (35%). In volunteers at low dose levels this metabolite is present at insignificant levels (< 1%) and 4-hydroxymolinate is a much more abundant metabolite (39%). This shows that extrapolation between species can be very misleading. It is concluded that the benefits of using human volunteers for metabolism studies at low doses far outweigh the minimal risks involved. As a basis for biological monitoring such studies can lead to a greatly improved risk assessment for pesticides in use.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00381338DOI Listing

Publication Analysis

Top Keywords

biological monitoring
16
human volunteer
8
volunteer studies
8
interpretation biological
8
animal studies
8
cyclopropane acids
8
studies
6
human
5
metabolite
5
biological
4

Similar Publications

Objectives: Cardiac biomarkers are useful for the diagnostic and prognostic assessment of myocardial injury (MI) and heart failure. By measuring specific proteins released into the bloodstream during heart stress or damage, these biomarkers help clinicians detect the presence and extent of heart injury and tailor appropriate treatment plans. This study aims to provide robust biological variation (BV) data for cardiac biomarkers in athletes, specifically focusing on those applied to detect or exclude MI, such as myoglobin, creatine kinase-myocardial band (CK-MB) and cardiac troponins (cTn), and those related to heart failure and cardiac dysfunction, brain natriuretic peptide (BNP) and N-terminal brain natriuretic pro-peptide (NT-proBNP).

View Article and Find Full Text PDF

Progressive Approaches in Oncological Diagnosis and Surveillance: Real-Time Impedance-Based Techniques and Advanced Algorithms.

Bioelectromagnetics

January 2025

Micropropulsion and Nanotechnology Laboratory, School of Engineering and Applied Science, George Washington University, Washington, DC, USA.

Cancer remains a formidable global health challenge, necessitating the development of innovative diagnostic techniques capable of early detection and differentiation of tumor/cancerous cells from their healthy counterparts. This review focuses on the confluence of advanced computational algorithms with noninvasive, label-free impedance-based biophysical methodologies-techniques that assess biological processes directly without the need for external markers or dyes. This review elucidates a diverse array of state-of-the-art impedance-based technologies, illuminating distinct electrical signatures inherent to cancer vs healthy tissues.

View Article and Find Full Text PDF

Ways to Measure Metals: From ICP-MS to XRF.

Curr Environ Health Rep

January 2025

School of Health Sciences, Purdue University, West-Lafayette, IN, 47906, USA.

Purpose Of Review: This review explores the use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Fluorescence (XRF) for quantifying metals and metalloids in biological matrices such as hair, nails, blood, bone, and tissue. It provides a comprehensive overview of these methodologies, detailing their technological limitations, application scopes, and practical considerations for selection in both laboratory and field settings. By examining traditional and novel aspects of each method, this review aims to guide researchers and clinical practitioners in choosing the most suitable analytical tool based on their specific needs for sensitivity, precision, speed, and sample preparation.

View Article and Find Full Text PDF

Facile synthesis of hierarchically flower-like hollow covalent organic frameworks for enrichment and metabolic analysis of benzophenone derivatives in mouse serum.

J Chromatogr A

January 2025

Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China. Electronic address:

Benzophenone derivatives (BPs), as synthetic chemicals widely used in personal care products, have drawn increasing attention due to their potential health risks. However, monitoring BPs in biological samples remains challenging due to their complex matrices and the deficiency in sensitivity and selectivity in current methods. Herein, a method combining hierarchically flower-like hollow covalent organic frameworks (HFH-COFs) with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established for the enrichment and detection of BPs in serum samples.

View Article and Find Full Text PDF

Low levels of human norovirus (HuNoV) in food and environment present challenges for nucleic acid detection. This study reported an evaporation-enhanced hydrogel digital reverse transcription loop-mediated isothermal amplification (HD RT-LAMP) with interfacial enzymatic reaction for sensitive HuNoV quantification in food and water. By drying samples on a chamber array chip, HuNoV particles were enriched in situ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!