To investigate alterations of magnesium metabolism in Type 2 (non-insulin-dependent) diabetes mellitus, we utilized a new magnesium-specific selective ion electrode apparatus to measure serum ionized magnesium (Mg-io) in fasting subjects with and without Type 2 diabetes, and compared these values to levels of serum total magnesium, and of intracellular free magnesium (Mgi) analysed by 31P-NMR spectroscopy. Both Mg-io (0.630 +/- 0.008 vs 0.552 +/- 0.008 mmol/l, p < 0.001) and Mgi (223.3 +/- 8.3 vs 184 +/- 13.7 mmol/l, p < 0.001), but not serum total magnesium, were significantly reduced in Type 2 diabetes compared with non-diabetic control subjects. Furthermore, a close relationship was observed between serum Mg-io and Mgi (r = 0.728, p < 0.001). We suggest that magnesium deficiency, both extracellular and intracellular, is a characteristic of chronic stable mild Type 2 diabetes, and as such, may predispose to the excess cardiovascular morbidity of the diabetic state. Furthermore, by more adequately reflecting cellular magnesium metabolism than total serum magnesium levels, Mg-io measurements may provide a more readily available tool than has heretofore been available to analyse magnesium metabolism in a variety of diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00401149 | DOI Listing |
Nutrients
January 2025
Division of Epidemiology, Vanderbilt Epidemiology Center, Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA.
Unlabelled: Metabolic dysfunction associated steatotic liver disease (MASLD) has been associated with increased risks of all-cause and cardiovascular disease (CVD) mortality. Identification of modifiable risk factors that may contribute to higher risks of mortality could facilitate targeted and intensive intervention strategies in this population. This study aims to examine whether the magnesium depletion score (MDS) is associated with all-cause and CVD mortality among individuals with MASLD or metabolic and alcohol associated liver disease (MetALD).
View Article and Find Full Text PDFNutrients
January 2025
Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
Background/objectives: Inadequate micronutrient intakes are common in individuals with overweight/obesityand can exacerbate cardiovascular and metabolic disease risk. Diet and exercise are primary strategies for managing overweight and may influence nutrient intakes. In this secondary analysis of dietary data collected in a randomized controlled trial (RCT, ClinicalTrials.
View Article and Find Full Text PDFPathogens
January 2025
Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico.
The path to survival for pathogenic organisms is not straightforward. Pathogens require a set of enzymes for tissue damage generation and to obtain nourishment, as well as a toolbox full of alternatives to bypass host defense mechanisms. Our group has shown that the parasitic protist encodes for 14 sphingomyelinases (SMases); one of them (acid sphingomyelinase 6, aSMase6) is involved in repairing membrane damage and exhibits hemolytic activity.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil.
This study evaluated the osteogenic potential of the bioactive glasses SinGlass (45S5) and SinGlass High (F18) in regenerating critical bone defects in rat calvaria. Both biomaterials promoted new bone formation around the particles, with the SinGlass High (F18) group exhibiting a higher rate of bone maturation. Histomorphological and birefringence analyses revealed better organization of the newly formed bone in the biomaterial-treated groups, and immunohistochemistry indicated the expression of osteogenic markers such as osteocalcin, immunostaining for bone morphogenetic protein 2 (BMP 2), and immunostaining for bone morphogenetic protein 4 (BMP 4).
View Article and Find Full Text PDFAoB Plants
January 2025
CNRS, UMR Ecologie des Forêt de Guyane (EcoFoG), AgroParisTech, CIRAD, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France.
Phosphorus (P) and potassium (K) play important roles in plant metabolism and hydraulic balance, respectively, while calcium (Ca) and magnesium (Mg) are important components of cell walls. Although significant amounts of these nutrients are found in wood, relatively little is known on how the wood concentrations of these nutrients are related to other wood traits, or on the factors driving the resorption of these nutrients within stems. We measured wood nutrient (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!