Protein degradation in the exocytic pathway was studied in Saccharomyces cerevisiae using human alpha-1-protease inhibitor (A1Pi) as a reporter molecule. Yeast cells transformed with A1Pi cDNA genes synthesized A1Pi that entered the secretion pathway and accumulated in the endoplasmic reticulum (ER). Cells expressing A1PiM (wild-type) accumulated about 10-fold more A1Pi than cells expressing A1PiZ (secretion defective variant). Analyses of A1Pi mRNA indicated that the low level of A1PiZ relative to A1PiM was not the result of differential gene transcription. Pulse-chase A1Pi radiolabeling showed that A1PiM and A1PiZ were degraded at different rates and suggested a rapid specific turnover of newly synthesized A1PiZ in the ER. Accumulated A1Pi was degraded at comparable rates in both wild-type cells and cells deficient in vacuolar protease activity, indicating that degradation of A1Pi did not occur in the vacuole. Studies to investigate the intracellular location of the degradative process, using temperature-sensitive secretion defective yeast strains, suggested the possibility that degradation occurs not only in the ER but at a second site accessed by vesicle transport. Together, these results demonstrate that a selective protein degradation process operates early in the yeast cell exocytic pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC300982 | PMC |
http://dx.doi.org/10.1091/mbc.4.7.729 | DOI Listing |
Elife
January 2025
Cell Biology, Hospital for Sick Children, Toronto, Canada.
Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018).
View Article and Find Full Text PDFProteomics
January 2025
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Alzheimer's disease (AD) is a leading cause of dementia, but the pathogenesis mechanism is still elusive. Advances in proteomics have uncovered key molecular mechanisms underlying AD, revealing a complex network of dysregulated pathways, including amyloid metabolism, tau pathology, apolipoprotein E (APOE), protein degradation, neuroinflammation, RNA splicing, metabolic dysregulation, and cognitive resilience. This review examines recent proteomic findings from AD brain tissues and biological fluids, highlighting potential biomarkers and therapeutic targets.
View Article and Find Full Text PDFInt J Mol Med
March 2025
Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan, R.O.C.
Oral squamous cell carcinoma (OSCC) is a type of head and neck cancer (HNC) with a high recurrence rate, which has been reported to be associated with the presence of cancer stem cells (CSCs). Tribbles pseudokinase 3 (TRIB3) is involved in intracellular signaling and the aim of the present study was to investigate the role of TRIB3 in the maintenance of CSCs. Analysis of The Cancer Genome Atlas database samples demonstrated a positive correlation between TRIB3 expression levels and shorter overall survival rates in patients with HNC.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Chemistry, Illinois State University, Normal, Il, USA.
Many oncoproteins are important therapeutic targets because of their critical role in inducing rapid cell proliferation, which represents one of the salient hallmarks of cancer. Chronic Myeloid Leukemia (CML) is a cancer of hematopoietic stem cells that is caused by the oncogene BCR-ABL1. BCR-ABL1 encodes a constitutively active tyrosine kinase protein that leads to the uncontrolled proliferation of myeloid cells, which is a hallmark of CML.
View Article and Find Full Text PDFProtein Pept Lett
January 2025
Department of Biology, Faculty of Science, Ege University, Izmir, Turkey.
Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!