Tay-Sachs disease (TSD) is an autosomal recessive, progressive, and fatal neurodegenerative disorder. Within the last 25 years, the discovery of the enzymatic basis of the disease, the deficiency of the enzyme hexosaminidase A, has made possible both enzymatic diagnosis of TSD and heterozygote identification. TSD is the first genetic condition for which a community-based heterozygote screening program was attempted with the intention of reducing the incidence of a genetic disease. In this article we review the clinical, biochemical, and molecular features of TSD as well as the development of laboratory technology that has been deployed in community genetic screening programs. We describe the assay procedures used and some of the limitations in their accuracy. We consider the impact of DNA-based technology on the process of identification of individuals carrying mutant genes associated with TSD and we discuss the social context within which genetic screening occurs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/dna.1993.12.651 | DOI Listing |
J Inherit Metab Dis
January 2025
Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.
There are currently at least 70 characterised lysosomal storage diseases (LSD) resultant from inherited single-gene defects. Of these, at least 30 present with central nervous system (CNS) neurodegeneration and overlapping aetiology. Substrate accumulation and dysfunctional neuronal lysosomes are common denominator, but how variants in 30 different genes converge on this central cellular phenotype is unclear.
View Article and Find Full Text PDFNeurol Genet
December 2024
From the School of Medicine (A.R.T., J.R.), The University of Queensland; Department of Neurology (W.R., P.A.M., R.D.H., L.V.), Royal Brisbane & Women's Hospital; The University of Queensland (P.A.M., R.D.H., L.V.), UQ Centre for Clinical Research; and Genetic Health Queensland (J.R.), Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia.
Tay-Sachs disease is a neurodegenerative disorder characterized by progressive neurologic impairment due to pathogenic variants in the gene that codes for the alpha subunit of β-hexosaminidase. We report 2 cases of adult-onset progressive weakness, ataxia, and neuropsychiatric symptoms in a 30-year-old man and 37-year-old woman. Both patients had compound heterozygosity in the gene with 4 distinct variants.
View Article and Find Full Text PDFmedRxiv
December 2024
Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA.
GM2 gangliosidosis is lysosomal storage disorder caused by deficiency of the heterodimeric enzyme β-hexosaminidase A. Tay-Sachs disease is caused by variants in encoding the α-subunit and Sandhoff disease is caused by variants in encoding the β-subunit. Due to shared clinical and biochemical findings, the two have been considered indistinguishable.
View Article and Find Full Text PDFCells
January 2025
Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
Sandhoff disease (SD) is a progressive neurodegenerative lysosomal storage disorder characterized by GM2 ganglioside accumulation as a result of mutations in the gene, which encodes the β-subunit of the enzyme β-hexosaminidase. Lysosomal storage of GM2 triggers inflammation in the CNS and periphery. The NLRP3 inflammasome is an important coordinator of pro-inflammatory responses, and we have investigated its regulation in murine SD.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada.
Tay-Sachs disease is a fatal neurodegenerative disorder caused by mutations inactivating the metabolic enzyme HexA. The most common mutation is c.1278insTATC, a tandem 4-bp duplication disrupting expression by frameshift.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!