In order to facilitate biochemical studies of cell-surface receptors, a plasmid allowing the expression of the periplasmic domain of the aspartate receptor from Salmonella typhimurium as a soluble periplasmic protein has been constructed. This 18-kDa protein is exported to the periplasm, where it may be extracted by mild osmotic lysis. This isolated domain behaves as a normal, soluble protein and has been purified to homogeneity by standard techniques. The purified periplasmic domain binds aspartate with a kD similar to that of the full-length receptor, and the binding occurs with negative cooperativity, i.e. the binding of one molecule of aspartate induces a conformational change that interferes with the binding of the second aspartate. Unlike the full-length receptor, the periplasmic domain undergoes a protein concentration- and aspartate-dependent monomer-dimer equilibrium. At low protein concentrations and in the absence of aspartate, the protein is monomeric. At higher protein concentrations or in the presence of saturating aspartate, the protein is dimeric. Two charge variants of the protein have been identified on native polyacrylamide gels. The more acidic form is blocked to Edman degradation, indicating that modification of the amino terminus of this protein can occur after cleavage of the signal peptide in the periplasm.
Download full-text PDF |
Source |
---|
mBio
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.
View Article and Find Full Text PDFStructure
January 2025
Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, SE1 1DB, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. Electronic address:
Tripartite resistance nodulation and cell division multidrug efflux pumps span the periplasm and are major drivers of multidrug resistance among gram-negative bacteria. Cations, such as Mg, become concentrated within the periplasm and, in contrast to the cytoplasm, its pH is sensitive to conditions outside the cell. Here, we reveal an interplay between Mg and pH in modulating the structural dynamics of the periplasmic adapter protein, AcrA, and its function within the prototypical AcrAB-TolC multidrug pump from Escherichia coli.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
Signal Transduct Target Ther
December 2024
Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
Outer membrane (OM) lipoproteins serve vital roles in Gram-negative bacteria, contributing to their pathogenicity and drug resistance. For these lipoproteins to function, they must be transported from the inner membrane (IM), where they are assembled, to the OM by the ABC transporter LolCDE. We have previously captured structural snapshots of LolCDE in multiple states, revealing its dynamic conformational changes.
View Article and Find Full Text PDFPLoS Genet
December 2024
Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America.
The Rcs (regulator of capsule synthesis) phosphorelay is a conserved cell envelope stress response mechanism in enterobacteria. It responds to perturbations at the cell surface and the peptidoglycan layer from a variety of sources, including antimicrobial peptides, beta-lactams, and changes in osmolarity. RcsF, an outer membrane lipoprotein, is the sensor for this pathway and activates the phosphorelay by interacting with an inner membrane protein IgaA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!