Toward the development of a fluorescence assay in combination with confocal microscopy to image free radicals generated by cells, we synthesized a fluorophore-nitroxide, 5-((2-carboxy)phenyl)-5-hydroxy-1-((2,2,5,5-tetramethyl-1-oxypyrrolid in-3- yl)methyl)-3-phenyl-2-pyrrolin-4-one sodium salt, and tested the applicability of this probe to detect oxygen-centered free radicals. The reaction of the fluorophore-nitroxide with superoxide (10 microM/min) generated either by the reaction of xanthine oxidase on xanthine or by PMA-activated neutrophils in the presence of cysteine (200 microM) resulted in a loss of electron spin resonance (ESR) signal intensity concurrent with an increase in fluorescence emission. The decrease in ESR signal and the augmentation in fluorescence emission were inhibited by the addition of superoxide dismutase. This fluorophore-nitroxide also reacted with methyl radical generated by the reaction of hydroxyl radical with DMSO (0.14 M). In this case a loss in ESR signal intensity concomitant with an increase in fluorescence emission which were inhibited by catalase (300 U/ml), was recorded. These results clearly demonstrated the feasibility of using fluorescence methodology in conjunction with a fluorophore-nitroxide to detect oxygen-centered free radicals in biological systems.

Download full-text PDF

Source
http://dx.doi.org/10.1006/abio.1993.1295DOI Listing

Publication Analysis

Top Keywords

free radicals
12
esr signal
12
fluorescence emission
12
probe detect
8
hydroxyl radical
8
radical generated
8
detect oxygen-centered
8
oxygen-centered free
8
generated reaction
8
signal intensity
8

Similar Publications

Mitochondria are important organelles that regulate cellular energy and biosynthesis, as well as maintain the body's response to environmental stress. Their dynamics and autophagy influence occurrence of cellular function, particularly under stressful conditions. They can generate reactive oxygen species (ROS) which is a major contributor to inflammatory diseases such as ulcerative colitis (UC).

View Article and Find Full Text PDF

Introduction: Oxidative stress, triggered by an imbalance between reactive oxygen species (ROS) production and cellular antioxidant defense mechanisms, is implicated in various pathological conditions. Plant-derived polysaccharides have gained significant attention as potential natural antioxidants due to their biocompatibility, biodegradability, and structural versatility.

Methods: This study focuses on the purification, structural characterization, and antioxidant activities of a novel pectin polysaccharide (HFPS) isolated from the flowers of Linn.

View Article and Find Full Text PDF

Doping in pure materials causes vital alterations in opto-electrical and physicochemical characteristics, which enable the produced doped material to be highly efficient and effective. The current work focused on the synthesis of C/N-co-doped-ZnO nanorods a facile, eco-friendly, and solvent-free mechano-thermal approach. The synthesized C/N-co-doped ZnO nanorods were employed for the photocatalytic decay of methylene blue (MB) and brilliant cresyl blue (BCB) dyes, and their degradation capability was compared with that of pure ZnO nanoparticles prepared a precipitation approach.

View Article and Find Full Text PDF

Under mild visible light conditions, formates facilitate C-O cleavage the EDA complex and SCS strategy, yielding α-carbonyl alkyl radicals. These radicals then react with olefins under air conditions, leading to the synthesis of diaryl 1,4-dicarbonyl compounds. Mechanistic studies reveal that α-formyloxy ketone is generated by the reaction between α-brominated acetophenone and formates, followed by the formation of the EDA complex.

View Article and Find Full Text PDF

Background: Moringa peregrina, renowned for its extensive health benefits, continues to reveal its therapeutic potential through ongoing research. The synthesis of Moringa peregrina extract-selenium nanoparticles (MPE-SeNPs) has emerged as a promising approach in developing versatile therapeutic agents.

Objective: To evaluate the protective effects of MPE-SeNPs against oxidative damage and inflammation caused by HgCl2 exposure in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!