Fifty-two out of 60 tannins, including gallo-, ellagi-, condensed, and complex tannins, are inhibitors of human DNA topoisomerase II in vitro. Thirty-six compounds that completely inhibited enzyme activity at a concentration of 500 nM or less, as assessed by ATP-dependent unknotting of P4 phage DNA, were at least 100-fold more potent than the clinically useful antitumor agent etoposide (VP-16). Relative inhibitory activity was primarily related to the number of phenolic hydroxyl groups (galloyl and hexahydroxydiphenoyl moieties) found in the active structures, with more groups generally conferring increased potencies. Unlike VP-16 and some DNA intercalative agents that stabilize the topoisomerase II-DNA cleavage intermediate, none of the active compounds induced protein-linked DNA breaks in cultured cells. Some of the tannins reduced VP-16-induced protein-linked DNA breaks by 20% or more, but one of these compounds, (-)-epicatechin, was not an inhibitor in vitro. Our data suggest that some tannins, such as sangiin H-6, that are potent inhibitors of catalytic double DNA-strand passage in vitro may target intracellular enzyme activity in a similar fashion to known poisons that interfere with formation of the enzyme-DNA covalent intermediate.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.2600820511DOI Listing

Publication Analysis

Top Keywords

potent inhibitors
8
dna topoisomerase
8
topoisomerase vitro
8
enzyme activity
8
protein-linked dna
8
dna breaks
8
dna
6
tannins
5
tannins potent
4
inhibitors dna
4

Similar Publications

Amphibian-Derived Peptides as Natural Inhibitors of SARS-CoV-2 Main Protease (Mpro): A Combined In Vitro and In Silico Approach.

Chem Biodivers

January 2025

Universidad Nacional del Litoral Facultad de Bioquimica y Ciencias Biologicas, Química Orgánica, Ciudad Universitaria. Paraje el Pozo S/N, Argentina, 3000, Santa Fe, ARGENTINA.

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has highlighted the urgent need for novel therapeutic agents targeting viral enzymes such as the main protease (Mpro), which plays a crucial role in viral replication. In this study, we investigate the inhibitory potential of 23 peptides isolated from the skin of amphibians belonging to the Hylidae and Leptodactylidae families against SARS-CoV-2 Mpro. Five peptides demonstrated significant inhibition using a colorimetric Mpro inhibition assay, with IC50 values ranging from 41 to 203 µM.

View Article and Find Full Text PDF

Structure-guided engineering of a mutation-tolerant inhibitor peptide against variable SARS-CoV-2 spikes.

Proc Natl Acad Sci U S A

January 2025

Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.

Pathogen mutations present an inevitable and challenging problem for therapeutics and the development of mutation-tolerant anti-infective drugs to strengthen global health and combat evolving pathogens is urgently needed. While spike proteins on viral surfaces are attractive targets for preventing viral entry, they mutate frequently, making it difficult to develop effective therapeutics. Here, we used a structure-guided strategy to engineer an inhibitor peptide against the SARS-CoV-2 spike, called CeSPIACE, with mutation-tolerant and potent binding ability against all variants to enhance affinity for the invariant architecture of the receptor-binding domain (RBD).

View Article and Find Full Text PDF

α-Glucosidase inhibitory activities of polyphenols from Mesua ferrea L. leaves.

Chem Biodivers

January 2025

Kunming Institute of Botany Chinese Academy of Sciences, Key laboratory of economic plants and biotechnology, 132# Lanhei Road, Heilongtan, Kunming, Yunnan, China, 650201, Kunming, CHINA.

Mesua ferrea L. is used in Ayurvedic and Thai medicine for treating various diseases, including diabetes. This study aimed to isolate and identify the bioactive constituents from M.

View Article and Find Full Text PDF

Design, Synthesis, and Biological Evaluation of Thieno[3,2-]pyrimidine Derivatives as the First Bifunctional PI3Kδ Isoform Selective/Bromodomain and Extra-Terminal Inhibitors.

J Med Chem

January 2025

College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China.

The concomitant inhibition of PI3Kδ and bromodomain and extra-terminal (BET) that exerts a synergistic effect on the B-cell receptor signaling pathway provides a new strategy for the treatment of aggressive diffuse large B-cell lymphoma (DLBCL). Herein, a merged pharmacophore strategy was utilized to discover a series of thieno[3,2-]pyrimidine derivatives as the first-in-class bifunctional PI3Kδ-BET inhibitors. Through optimization, a highly potent compound () was identified to possess excellent and balanced activities against PI3Kδ [inhibitory concentration (IC) = 112 ± 8 nM] and BRD4-BD1 (IC = 19 ± 1 nM) and exhibited strong antiproliferative activities in DLBCL cells.

View Article and Find Full Text PDF

Improvement in XIa Selectivity of Snake Venom Peptide Analogue BF9-N17K Using P2' Amino Acid Replacements.

Toxins (Basel)

January 2025

Institute of Biomedicine, Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China.

Coagulation factor XIa is a new serine-protease family drug target for next-generation anticoagulants. With the snake venom Kunitz-type peptide BF9 as the scaffold, we obtained a highly active XIa inhibitor BF9-N17K in our previous work, but it also inhibited the hemostatic target plasmin. Here, in order to enhance the selectivity of BF9-N17K toward XIa, four mutants, BF9-N17K-L19A, BF9-N17K-L19S, BF9-N17K-L19D, and BF9-N17K-L19K, were further designed using the P2' amino acid classification scanning strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!