Imidazenil: a new partial positive allosteric modulator of gamma-aminobutyric acid (GABA) action at GABAA receptors.

J Pharmacol Exp Ther

Fidia-Georgetown Institute for the Neurosciences, Georgetown University Medical School, Washington, District of Columbia.

Published: August 1993

Positive allosteric modulators of gamma-aminobutyric acid (GABA)A receptors, including benzodiazepines and congeners, can be classified into three categories: 1) full allosteric modulators (i.e., triazolam and alprazolam) that act with high potency and efficacy at many GABAA receptors; 2) selective allosteric modulators (i.e., diazepam) that act with high potency and high efficacy at selected GABAA receptors; and 3) partial allosteric modulators (i.e., bretazenil) that act with high potency but low efficacy at many GABAA receptors. Imidazenil, an imidazobenzodiazepine carboxamide, has been characterized as a novel representative of the partial allosteric modulator class. When tested on a broad spectrum (native and recombinant) of GABAA receptors, imidazenil positively modulates the GABA-elicited Cl- currents with a 4- to 5-fold higher potency but an efficacy (30-50%) lower than that of diazepam, and it antagonizes the effects of the latter drug. Imidazenil in vitro (Ki = 5 x 10(-10) M) and in vivo (ID50 = 0.2 mumol/kg i.v.) displaces [3H]flumazenil from its brain binding sites and in vivo it possesses a marked anticonflict profile in the rat Vogel conflict-punishment test and is 10 times more potent than bretazenil and 100 times more potent than diazepam or alprazolam in antagonizing bicuculline- and pentylenetetrazol-induced seizures. Unlike diazepam and alprazolam, which induce sedation and ataxia and potentiate the effects of ethanol and thiopental at doses similar to those that produce anticonflict effects and occupy 50% of brain flumazenil binding sites, imidazenil does not produce ataxia or sedation in rats nor does it potentiate the effects of ethanol or thiopental in doses 30- to 50-fold higher than those required for the anticonflict effect and for 100% occupancy of brain flumazenil binding sites. Furthermore, when administered with diazepam, imidazenil blocks in a dose-related fashion the sedative, ataxic effects of this drug and thus acts on these unwanted responses as an antagonist (i.e., like flumazenil). In all tests, imidazenil has the pharmacological profile of a partial allosteric modulator, but is more potent than bretazenil, has a longer biological half-life and, in rodents, is virtually unable to cause sedation, ataxia or to potentiate ethanol toxicity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

gabaa receptors
24
allosteric modulators
16
allosteric modulator
12
high potency
12
partial allosteric
12
binding sites
12
positive allosteric
8
gamma-aminobutyric acid
8
potency efficacy
8
efficacy gabaa
8

Similar Publications

As the main inhibitory neurotransmission system, the GABAergic system poses an interesting yet underutilized target for molecular brain imaging. While PET imaging of postsynaptic GABAergic neurons has been accomplished using radiolabeled benzodiazepines targeting the GABA receptor, the development of presynaptic radioligands targeting GABA transporter 1 (GAT1) has been unsuccessful thus far. Therefore, we developed a novel GAT1-addressing radioligand and investigated its applicability as a PET tracer in rodents.

View Article and Find Full Text PDF

Therapeutic potential of rutin in premenstrual depression: evidence from and studies.

Front Pharmacol

January 2025

Laboratory of Traditional Chinese Medicine and Stress Injury of Shandong Province, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.

Introduction: Premenstrual dysphoric disorder (PMDD) is a cyclical mood disorder that severely affects the daily life of women of reproductive age. Most of the medications being used clinically have limitations such as low efficacy, side effects, and high cost, so there is an urgent need to discover safer and more effective medications. Rutin is a natural flavonol glycoside with various pharmacological properties including antidepressant.

View Article and Find Full Text PDF

The motor symptoms of Parkinson's Disease are attributed to the degeneration of dopamine neurons in the substantia nigra pars compacta (SNc). Previous work in the MCI-Park mouse model has suggested that the loss of somatodendritic dopamine transmission predicts the development of motor deficits. In the current study, brain slices from MCI-Park mice were used to investigate dopamine signaling in the SNc prior to and through the onset of movement deficits.

View Article and Find Full Text PDF

The present study investigated the impact of GABAergic signaling and miRNA expression on glioblastoma multiforme (GBM) growth within the medial prefrontal cortex (mPFC) and its associated cognitive and emotional impairments. The implantation of C6 cells into the mPFC induced GBM in this brain region (referred to as the mPFC-GBM) in male Wistar rats via stereotaxic surgery, as confirmed by Magnetic Resonance Imaging (MRI), and Hematoxylin and Eosin (H&E) staining. Repeated microinjections of muscimol, a potent GABA receptor agonist, directly into the mPFC-GBM (1 µg/rat/2.

View Article and Find Full Text PDF

Design, synthesis and structure-activity relationship of novel 1,2,4-triazolopyrimidin-5-one derivatives targeting GABA and Na1.2 with antiepileptic activity.

Eur J Med Chem

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Xicheng district, Beijing, 100050, China. Electronic address:

A novel class of 7-phenyl-[1,2,4]triazol-5(4H)-one derivatives was designed and synthesized, and their in vivo anticonvulsant activities were evaluated using subcutaneous pentylenetetrazole (Sc-PTZ) and maximal electroshock (MES) tests. Compounds 3u, 4f and 4k exhibited significant anticonvulsant activities in the Sc-PTZ model with ED values of 23.7, 17.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!