The effect of pH on the conformational stability of insulin was studied. Surprisingly, the Gibbs free energy of unfolding increased approximately 30% by acidification. pH titration of insulin's conformational stability is described by a transition involving a single proton with an apparent pK(a) of 7.0. The acid stabilization of insulin's conformation was attributed to the protonation of histidine at position 5 on the B-chain (HB5) as determined by 1H-NMR of the histidines, selective amino acid alteration, and enthalpies of ionization. Further acidification (at least to pH 2) does not decrease the free energy of unfolding. A conformational change in the tertiary structure, as indicated by the near-UV circular dichroism spectrum, accompanies this change in stability. We propose that this acid stabilization of insulin is physiologically important in maintaining insulin stability in the acid environment of the secretory/storage granules of the beta-cell of the pancreatic islets of Langerhans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00083a004 | DOI Listing |
Biomed Phys Eng Express
January 2025
Biomedical Engineering , University of Wisconsin-Milwaukee College of Engineering and Applied Science, 3203 N Downer Ave, Milwaukee, Milwaukee, Wisconsin, 53211-3029, UNITED STATES.
Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.
View Article and Find Full Text PDFPLoS One
January 2025
Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
Non-covalent protein-protein interactions are one of the most fundamental building blocks in cellular signalling pathways. Despite this, they have been historically hard to identify using conventional methods due to their often weak and transient nature. Using genetic code expansion and incorporation of commercially available unnatural amino acids, we have developed a highly accessible method whereby interactions between biotinylated ubiquitin-like protein (UBL) probes and their binding partners can be stabilised using ultraviolet (UV) light-induced crosslinks.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.
The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.
View Article and Find Full Text PDFEnzymatic asymmetric synthesis of l-phenylglycine by amino acid dehydrogenases has potential for industrial applications; however, this is hindered by their low catalytic efficiency toward high-concentration substrates. We identified and characterized a novel leucine dehydrogenase (LeuDH) with a high catalytic efficiency for benzoylformic acid via directed metagenomic approaches. Further, we obtained a triple-point mutant LeuDH-EER (D332E/G333E/L334R) with improved stability and catalytic efficiency through the rational design of distal loop 13.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-530, Lodz, Poland.
In recent years, there has been a surge in the production of kombucha-a functional beverage obtained via microbial fermentation of tea. However, fresh, unpasteurized kombucha is sensitive to quality deterioration as a result of, among other factors, oxidation. The addition of hops seems to be promising, due to their antioxidative properties, which may improve the stability of kombucha.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!