Attachment of ubiquitin to proteins is catalyzed by a family of ubiquitin-conjugating (UBC) enzymes. Although these enzymes are essential for many cellular processes; their molecular functions remain unclear because no physiological target has been identified for any of them. Here we show that four UBC proteins (UBC4, UBC5, UBC6, and UBC7) target the yeast MAT alpha 2 transcriptional regulator for intracellular degradation by two distinct ubiquitination pathways. UBC6 and UBC7 define one of the pathways and can physically associate. The UBC6/UBC7-containing complex targets the Deg1 degradation signal of alpha 2, a conclusion underscored by the finding that UBC6 is encoded by DOA2, a gene previously implicated in Deg1-mediated degradation. These data reveal an unexpected overlap in substrate specificity among diverse UBC enzymes and suggest a combinatorial mechanism of substrate selection in which UBC enzymes partition into multiple ubiquitination complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0092-8674(93)90426-q | DOI Listing |
Eur Rev Med Pharmacol Sci
December 2024
Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada.
Objective: Monoamine oxidase (MAO) inhibitors reduce inflammation in a number of in vitro and in vivo models. This finding led to the development of a novel MAO-B selective inhibitor (RG0216) designed to reduce blood-brain barrier penetration. To elucidate RG0216's regulatory role in inflammation-relevant signaling pathways, we employed a transcriptome analytic approach to identify genes that are differentially regulated by RG0216 and then globally identified which inflammation-relevant biological signaling pathways were altered by this drug.
View Article and Find Full Text PDFStructure
December 2024
Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada.
The E2/E3 hybrid enzyme UBE2O plays important roles in key biological events, but its autoubiquitination mechanism remains largely unclear. In this study, we determined the crystal structures of full-length (FL) UBE2O from Trametes pubescens (tp) and its ubiquitin-conjugating (UBC) domain. The dimeric FL-tpUBE2O structure revealed interdomain interactions between the conserved regions (CR1-CR2) and UBC.
View Article and Find Full Text PDFNat Commun
December 2024
Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, BC, Canada.
Heritable phenotypic variation plays a central role in evolution by conferring rapid adaptive capacity to populations. Mechanisms that can explain genetic diversity by describing connections between genotype and organismal fitness have been described. However, the difficulty of acquiring comprehensive data on genotype-phenotype-environment relationships has hindered the efforts to explain how the ubiquitously observed phenotypic variation in populations emerges and is maintained.
View Article and Find Full Text PDFRMD Open
December 2024
David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
Interstitial lung disease (ILD) associated with rheumatoid arthritis or with connective tissue diseases such as systemic sclerosis can be collectively named systemic autoimmune rheumatic disease-associated ILDs (SARD-ILDs) or rheumatic musculoskeletal disorder-associated ILDs. SARD-ILDs result in substantial morbidity and mortality, and there is a high medical need for effective therapies that target both fibrotic and inflammatory pathways in SARD-ILD. Phosphodiesterase 4 (PDE4) hydrolyses cyclic AMP, which regulates multiple pathways involved in inflammatory processes.
View Article and Find Full Text PDFGene
March 2025
State University of Londrina (UEL), Department of General Biology, Center of Biological Sciences, Londrina, PR 86057-970, Brazil. Electronic address:
Background: Alteration in DNA repair and metabolism genes can affect the maintenance of DNA integrity or xenobiotics metabolism, potentially leading to DNA damage accumulation. The present study investigated the association between polymorphisms in Glutathione S-Transferase Pi 1 (GSTP1, rs1695) and O-6-Methylguanine-DNA Methyltransferase (MGMT, rs2308321) genes with urothelial bladder cancer (UBC) susceptibility and prognosis. Furthermore, the methylation patterns of the promoter region of these genes were analyzed in tumor and non-tumor bladder tissues, besides MGMT gene expression in tumor samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!