Expression of the human epidermal growth factor receptor (EGFR) gene is inhibited by ligand-activated thyroid hormone receptor (T3R). Binding sites for Sp1 and for the T3R.retinoid X receptor (RXR) complex overlap in a functional core of the EGFR promoter. Sp1 inhibited binding of the T3R complex to this 36-base pair (bp) EGFR element in vitro but did not affect binding of the T3R complex to a positive thyroid hormone response element (TRE). In Drosophila SL2 cells, which lack Sp1 and T3R, function of the EGFR promoter was strongly dependent on Sp1. Sp1-dependent promoter function was inhibited by ligand-activated T3R but not by mutant T3R defective in DNA or T3 binding. RXR increased the extent of inhibition. Sp1 enhanced activity of the 36-bp element placed 5' to a minimal TATA promoter and this enhancement was also repressed by T3R. Mutations in the 36-bp element were unable to separate Sp1 and T3R functions. However, addition of a second half-site 5' to the existing site in an inverted repeat configuration created a positive TRE. In the absence of ligand, T3R inhibited Sp1 stimulation from this altered element; addition of T3 reversed the inhibition. When a dimeric TRE is separated from Sp1-binding sites strong synergism was observed. The nature and location of the TRE thus strongly influence biological responses. A TRE site in the EGFR promoter that overlaps an Sp1-binding site inhibits Sp1 function but is unable to direct positive function.

Download full-text PDF

Source

Publication Analysis

Top Keywords

egfr promoter
12
t3r
9
epidermal growth
8
growth factor
8
factor receptor
8
inhibited ligand-activated
8
thyroid hormone
8
sp1
8
binding t3r
8
t3r complex
8

Similar Publications

Glioblastoma (GBM) classification involves a combination of histological and molecular signatures including IDH1/2 mutation, TERT promoter mutation, and EGFR amplification. Non-canonical mutations such as BRAF, found in 1-2% of GBMs, activate the MEK-ERK signaling pathway. This mutation can be targeted by small molecule inhibitors, offering therapeutic potential for GBM.

View Article and Find Full Text PDF

The latest World Health Organization (WHO) classification of central nervous system tumors (WHO2021/5th) has incorporated molecular information into the diagnosis of each brain tumor type including diffuse glioma. Therefore, an artificial intelligence (AI) framework for learning histological patterns and predicting important genetic events would be useful for future studies and applications. Using the concept of multiple-instance learning, we developed an AI framework named GLioma Image-level and Slide-level gene Predictor (GLISP) to predict nine genetic abnormalities in hematoxylin and eosin sections: , , mutations, promoter mutations, homozygous deletion (CHD), amplification (amp), 7 gain/10 loss (7+/10-), 1p/19q co-deletion, and promoter methylation.

View Article and Find Full Text PDF

Background: Isocitrate dehydrogenase (IDH)-mutant gliomas generally have a better prognosis than IDH-wild-type glioblastomas, and the extent of resection significantly impacts prognosis. However, there is a lack of integrated tools for predicting outcomes based on molecular subtypes and treatment modalities. This study aimed to identify factors influencing gross total resection (GTR) rates and to develop a clinical prognostic tool for IDH-mutant gliomas.

View Article and Find Full Text PDF

Background: Diffuse hemispheric glioma, histone 3 (H3) G34-mutant, has been newly defined in the 2021 WHO classification of central nervous system tumors. Here we sought to define the prognostic roles of clinical, neuroimaging, pathological, and molecular features of these tumors.

Methods: We retrospectively assembled a cohort of 114 patients (median age 22 years) with diffuse hemispheric glioma, H3 G34-mutant, CNS WHO grade 4 and profiled the imaging, histological and molecular landscape of their tumors.

View Article and Find Full Text PDF

Members of the KMT2C/D-KDM6A complex are recurrently mutated in urothelial carcinoma and in histologically normal urothelium. Here, using genetically engineered mouse models, we demonstrate that Kmt2c/d knockout in the urothelium led to impaired differentiation, augmented responses to growth and inflammatory stimuli and sensitization to oncogenic transformation by carcinogen and oncogenes. Mechanistically, KMT2D localized to active enhancers and CpG-poor promoters that preferentially regulate the urothelial lineage program and Kmt2c/d knockout led to diminished H3K4me1, H3K27ac and nascent RNA transcription at these sites, which leads to impaired differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!