During the entry of poliovirus into cells, a conformational transition occurs within the virion that is dependent upon its binding to the cell surface receptor. This conformational rearrangement generates an altered particle of 135S, results in the extrusion of capsid protein VP4 and the amino terminus of VP1 from the virion interior, and leads to the acquisition of membrane-binding properties by the 135S particle. Although the subsequent fate of VP4 is unknown, its apparent absence from purified 135S particles has long suggested that VP4 is not directly involved during virus entry. We report here the construction by site-specific mutagenesis of a nonviable VP4 mutant that upon transfection of the cDNA appears to form mature virus particles. These particles, upon interaction with the cellular receptor, undergo the 135S conformational transition but are defective at a subsequent stage in virus entry. The results demonstrate that the participation of VP4 is required during cell entry of poliovirus. In addition, these data indicate the existence of additional stages in the cell entry process beyond receptor binding and the transition to 135S particles. These post-135S stages must include the poorly understood processes by which nonenveloped viruses cross the cell membrane, uncoat, and deliver their genomes into the cytoplasm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC237900PMC
http://dx.doi.org/10.1128/JVI.67.8.5075-5078.1993DOI Listing

Publication Analysis

Top Keywords

cell entry
12
entry poliovirus
12
stages cell
8
conformational transition
8
135s particles
8
virus entry
8
entry
6
cell
5
135s
5
vp4
5

Similar Publications

Porcine epidemic diarrhea virus (PEDV), as a type of Alphacoronavirus causing acute diarrhea and high death rate among sucking piglets, poses great financial damage to the swine industry. Nevertheless, the molecular mechanism whereby PEDV enters host cells is unclear, limiting the development of PED vaccines and anti-PEDV agents. The present study found that the host protein ribonuclease kappa (RNASEK) was regulated by USF2, a transcription factor, and facilitated the PEDV replication.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with Kaposi's sarcoma and B cell malignancies. Like all herpesviruses, KSHV contains conserved envelope glycoproteins (gps) involved in virus binding, entry, assembly, and release from infected cells, which are also targets of the immune response. Due to the lack of a reproducible animal model of KSHV infection, the precise functions of the KSHV gps during infection are not completely known.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus responsible for coronavirus disease 2019 (COVID-19). While SARS-CoV-2 primarily targets the lungs and airways, it can also infect other organs, including the central nervous system (CNS). The aim of this study was to investigate whether the choroid plexus could serve as a potential entry site for SARS-CoV-2 into the brain.

View Article and Find Full Text PDF

The discovery that infections of viruses are pervasive among insects has considerable potential for future applications, such as new strategies for pest control through the manipulation of virus-host interactions. However, few studies can be found that aim to minimize (for beneficial insects) or maximize (for pests) virus impact or virulence. Viruses generally employ molecular mechanisms that deviate from the cells' to increase their replication efficiency and to avoid the immune response.

View Article and Find Full Text PDF

Extracellular vesicles in ZIKV infection: Carriers and facilitators of viral pathogenesis?

Sci Prog

January 2025

Virology Group, Vice-Chancellor of Research, Universidad El Bosque, Bogotá, Colombia.

Zika virus (ZIKV) is a flavivirus of significant epidemiological importance, utilizing various transmission strategies and infecting "immune privileged tissues" during both the pre- and postnatal periods. One such transmission method may involve extracellular vesicles (EVs). EVs can travel long distances without degrading, carrying complex messages that trigger different responses in recipient cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!