Inhibition of antigen-induced bronchoconstriction and eosinophil infiltration in the guinea pig by the cyclic AMP-specific phosphodiesterase inhibitor, rolipram.

J Pharmacol Exp Ther

Department of Inflammation & Respiratory Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania.

Published: July 1993

Selective inhibition of the low Km cyclic AMP-specific phosphodiesterase has been shown to inhibit inflammatory cell function and relax airway smooth muscle. These studies were conducted to characterize the bronchodilator and anti-inflammatory activity of rolipram, an archetypical cyclic AMP-specific phosphodiesterase inhibitor, in in vitro and in vivo guinea pig airway models. In isolated tracheal rings from ovalbumin (OA)-sensitive guinea pigs, both R- and S-enantiomers of rolipram (1 microM) significantly antagonized OA-induced contractions. In contrast, neither enantiomer at concentrations up to 1 microM significantly inhibited histamine- or LTD4-induced contractions. In superfusion and mediator release experiments, both enantiomers of rolipram significantly reduced antigen-induced prostaglandin D2 release, but had minimal effect on histamine release. In anesthetized, ventilated OA-sensitive guinea pigs, racemic rolipram or enantiomers reduced OA-induced bronchoconstriction with ID50 values of approximately 0.25 mg/kg i.v. Histamine- and leukotriene D4-induced bronchoconstriction were not affected by doses of rolipram which abolished the response to OA. Higher doses (3-10 mg/kg) reduced histamine-, but not the leukotriene D4-induced bronchoconstriction. In conscious OA-sensitive guinea pigs, intragastric pretreatment with rolipram dose-dependently reduced both the OA-induced decreases in specific conductance as well as the corresponding pulmonary eosinophil influx as assessed by both bronchoalveolar lavage and histological evaluation. Therefore, rolipram produces significant inhibition of antigen-induced bronchoconstrictor and inflammatory responses, thus providing strong evidence that this pharmacological approach may be of significant therapeutic value in allergic asthma.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source

Publication Analysis

Top Keywords

cyclic amp-specific
12
amp-specific phosphodiesterase
12
oa-sensitive guinea
12
guinea pigs
12
inhibition antigen-induced
8
guinea pig
8
phosphodiesterase inhibitor
8
rolipram
8
reduced oa-induced
8
histamine- leukotriene
8

Similar Publications

Membrane-embedded CdaA is required for efficient synthesis of second messenger cyclic di-AMP.

Commun Biol

December 2024

Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 3, Groningen, The Netherlands.

Cyclic di-adenylate monophosphate (cyclic di-AMP) is an important second messenger in microorganisms. Cyclic di-AMP regulates bacterial cell volume and turgor via control of potassium and compatible solute transport but is also involved in many other processes, including the activation of the metazoan innate immune response to bacterial infections. We compare the activity of full-length membrane-embedded CdaA, the enzyme that synthesizes cyclic di-AMP, with the water-soluble catalytic domain CdaA-DAC.

View Article and Find Full Text PDF

3'3'-Cyclic di-AMP (c-di-AMP) is an important nucleotide second messenger found throughout the bacterial domain of life. c-di-AMP is essential in many bacteria and regulates a diverse array of effector proteins controlling pathogenesis, cell wall homeostasis, osmoregulation, and central metabolism. Despite the ubiquity and importance of c-di-AMP, methods to detect this signaling molecule are limited, particularly at single-cell resolution.

View Article and Find Full Text PDF

Several members of the 3',5'-cyclic nucleotide phosphodiesterase (PDE) family play an essential role in cellular processes, which has labeled them as interesting targets for various diseases. The parasitic protozoan , causative agent of human African trypanosomiasis, contains several cyclic AMP specific PDEs from which TbrPDEB1 is validated as a drug target. The recent discovery of selective TbrPDEB1 inhibitors has increased their potential for a novel treatment for this disease.

View Article and Find Full Text PDF

Inhibition of prolyl hydroxylases increases hepatic insulin and decreases glucagon sensitivity by an HIF-2α-dependent mechanism.

Mol Metab

November 2020

Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA. Electronic address:

Objective: Recent evidence indicates that inhibition of prolyl hydroxylase domain (PHD) proteins can exert beneficial effects to improve metabolic abnormalities in mice and humans. However, the underlying mechanisms are not clearly understood. This study was designed to address this question.

View Article and Find Full Text PDF

A decade of research on the second messenger c-di-AMP.

FEMS Microbiol Rev

November 2020

State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.

Cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) is an emerging second messenger in bacteria and archaea that is synthesized from two molecules of ATP by diadenylate cyclases and degraded to pApA or two AMP molecules by c-di-AMP-specific phosphodiesterases. Through binding to specific protein- and riboswitch-type receptors, c-di-AMP regulates a wide variety of prokaryotic physiological functions, including maintaining the osmotic pressure, balancing central metabolism, monitoring DNA damage and controlling biofilm formation and sporulation. It mediates bacterial adaptation to a variety of environmental parameters and can also induce an immune response in host animal cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!