Somatic and testis-specific cytochromes c were localized ultrastructurally in the seminiferous epithelium by immunocytochemistry using monospecific antibodies. Cytochrome cS was lost from the mitochondria as spermatogenesis advanced, while there was a relative increase in cytochrome cT during the zygotene-to-pachytene transition; this was in agreement with other studies that have suggested activation of the cytochrome cT gene during prophase of the first meiotic division. Cytochrome cT was highly concentrated in mitochondria that were being degraded within cytoplasmic lobes of spermatids and in residual bodies that were phagocytized by Sertoli cells. The two isoforms were found to coexist within the same mitochondrion during the transitional period from cytochrome cS to cytochrome cT predominance. In addition, both cytochromes c were present in the chromatoid bodies of spermatocytes and round spermatids; this suggests that the chromatoid body may be involved in the storage of these isozymes and possibly in their differential expression within germ cell mitochondria. Apocytochrome c was concentrated in mitochondria and chromatoid bodies of the germ cells and also scattered in the cytoplasm. The presence of the holoprotein and apoprotein immunoprobes within the chromatoid bodies of spermatocytes and spermatids was an interesting observation that raises questions regarding the precise location of the synthesis of cytochromes c in spermatogenic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod48.6.1299DOI Listing

Publication Analysis

Top Keywords

chromatoid bodies
12
seminiferous epithelium
8
concentrated mitochondria
8
bodies spermatocytes
8
cytochrome
6
immunoelectron microscopic
4
microscopic localization
4
localization testicular
4
testicular somatic
4
cytochromes
4

Similar Publications

Oligo-astheno-teratozoospermia (OAT) is a common cause of male infertility, but the genetic basis of most OAT cases is still unknown. Here, one homozygous loss-of-function (LOF) variant in TDRD6, c.G1825T/p.

View Article and Find Full Text PDF

Biomolecular condensates organize biochemical processes at the subcellular level and can provide spatiotemporal regulation within a cell. Among these, ribonucleoprotein (RNP) granules are storage hubs for translationally repressed mRNA. Whether RNP granules can also activate translation and how this could be achieved remains unclear.

View Article and Find Full Text PDF

Germline-specific RNA helicase DDX4 forms cytoplasmic granules in cancer cells and promotes tumor growth.

Cell Rep

July 2024

Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520 Turku, Finland. Electronic address:

Article Synopsis
  • Cancer cells experience significant changes in gene expression and epigenetics, including the abnormal activation of certain tissue-specific genes.
  • The RNA helicase DDX4 forms structures similar to germ granules in tumors but not in cultured cancer cells, containing proteins linked to RNA and splicing.
  • The absence of DDX4 in cancer cells alters gene expression, reduces cancer growth and invasiveness, and is associated with poorer patient outcomes in certain cancers like head and neck squamous cell carcinoma and advanced prostate cancer.
View Article and Find Full Text PDF

We studied the function of translation factor eIF4E isoforms in regulating mRNAs in germ cell granules/condensates. Translational control of mRNAs plays an essential role in germ cell gene regulation. Messenger ribonucleoprotein (mRNP) complexes assemble on mRNAs as they move from the nucleus into perinuclear germ granules to exert both positive and negative post-transcriptional regulation in the cytoplasm.

View Article and Find Full Text PDF

Membraneless organelles are RNA-protein assemblies which have been implicated in post-transcriptional control. Germ cells form membraneless organelles referred to as germ granules, which contain conserved proteins including Tudor domain-containing scaffold polypeptides and their partner proteins that interact with Tudor domains. Here, we show that in Drosophila, different germ granule proteins associate with the multi-domain Tudor protein using different numbers of Tudor domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!