Catecholamine terminals in the paraventricular nucleus (PVN) of the hypothalamus of 60-day-old rats were destroyed by the stereotaxic injection of 6-hydroxydopamine into the PVN (6-OHDA; 9 micrograms/1.5 microliters bilaterally), and the rats were tested 2 weeks later. Lesions led to a 70% reduction of norepinephrine in the hypothalamus and a loss of dopamine-beta-hydroxylase immunoreactivity in the PVN. Furthermore, 6-OHDA lesions in the hypothalamus disrupted stressor-induced (15 min of restraint) changes in GABAA receptor function in the cerebral cortex (assessed by measuring chloride-facilitated benzodiazepine binding) but did not alter stressor-induced increases in plasma corticosterone levels. Additionally, the lesion did not change the responsiveness of the GABAA receptor to the corticosterone metabolite, allotetrahydrodeoxycorticosterone. These results indicate that stressor-induced changes in cortical GABAA receptor function are not driven by the stressor-induced release of corticosterone. A separate group of animals were tested for behavioral responses to challenge, and while 6-OHDA-induced lesions did not alter total scores in the test of environment-specific social interaction, the lesions did induce a change in composition of the behavior. Lesioned animals demonstrated increased physical (vigorous contact) interactions, similar to behavior previously observed in younger rats. The results of the behavioral study support a role for the GABAA receptor in the cerebral cortex in mediating appropriate behavioral responses to challenge in the adult rat. Thus, a hypothalamic lesion that prevented challenge-induced changes in GABAA receptor function in the cortex (with no change in the corticosterone response to the stressor) also led to altered behavioral responses to challenge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-8993(93)90879-r | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!