Germline mutations of the APC gene are responsible for familial adenomatous polyposis, an autosomal dominant inherited predisposition to colorectal tumors. Mutation of the APC gene is also an early, if not initiating, event for sporadic colorectal tumorigenesis. In both cases, almost all of the currently identified mutations of APC result in the truncation of the protein. In this study, we demonstrate that truncated APC proteins can associate with the wild type APC in vivo. Using in vitro expression and immunoprecipitation, we show that the first 171 residues of APC are sufficient for APC oligomerization and that the first 45 amino acids of APC is necessary for this interaction. These results indicate that most mutant APC proteins should be able to bind to wild type APC protein and perhaps inactivate it in a dominant negative manner.
Download full-text PDF |
Source |
---|
J Cardiovasc Med (Hagerstown)
February 2025
Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste.
Diagnosing cardiac amyloidosis (CA) is challenging because of its phenotypic heterogeneity, multiorgan involvement requiring interaction among experts in different specialties and subspecialties, lack of a single noninvasive diagnostic tool, and still limited awareness in the medical community. Missing or delaying the diagnosis of CA may profoundly impact on patients' outcomes, as potentially life-saving treatments may be omitted or delayed. The suspicion of CA should arise when "red flags" for this condition are present, together with increased left ventricular wall thickness.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Distinct tau amyloid assemblies underlie diverse tauopathies but defy rapid classification. Cell and animal experiments indicate tau functions as a prion, as different strains propagated in cells cause unique, transmissible neuropathology after inoculation. Strain amplification requires compatibility of the monomer and amyloid template.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
During meiosis, pairing between homologous chromosomes is stabilized by the assembly of the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and regulates their distribution. However, how the SC regulates crossover formation remains elusive.
View Article and Find Full Text PDFSci Transl Med
January 2025
First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany.
In patients with cystic fibrosis (CF), repeated cycles of infection and inflammation eventually lead to fatal lung damage. Although diminished mucus clearance can be restored by highly effective CFTR modulator therapy, inflammation and infection often persist. To elucidate the role of the innate immune system in CF etiology, we investigated a CF pig model and compared these results with those for preschool children with CF.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
The mitotic spindle is composed of distinct networks of microtubules, including interpolar bundles that can bridge sister kinetochore fibers and bundles that organize the spindle midzone in anaphase. The crosslinking protein PRC1 can mediate such bundling interactions between antiparallel microtubules. PRC1 is a substrate of mitotic kinases including CDK/cyclin-B, suggesting that it can be phosphorylated in metaphase and dephosphorylated in anaphase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!