The nervous control of the retractor penis muscle (rp) was investigated in the anaesthetized goat. Also, isolated field stimulated strips of the muscle were studied. The noradrenaline (NA) and acetylcholine (ACh) content of the rp was determined, and histochemistry for adrenergic and acetylcholinesterase (AChE) positive nerves was performed. The muscle exhibited spontaneous activity that persisted after section of all nerves. There was, however, also a tendency of the activity to follow the general vasomotor tone, which disappeared after section of the sympathetic chains. The excitatory adrenergic nerves which innervate the muscle come from the sympathetic chains and run along the pudendal, the hypogastric and the pelvic nerves. The rp has a dense network of adrenergic fibres and is very sensitive to excitatory adrenergic stimulation. It has a fairly large NA content, which is higher in old goats (5.95 +/- 0.42 micrograms g-1) than in young goats (2.87 +/- 0.78 micrograms g-1). Inhibitory non-adrenergic non-cholinergic (NANC) innervation reaches it via the pelvic and the hypogastric nerves. The maximum inhibitory response is reached at low frequencies (2-4 Hz). Cholinergic prejunctional inhibition of the excitatory response to sympathetic chain stimulation was effected by simultaneous stimulation of the hypogastric nerves. In vitro experiments confirmed the presence of endogenous cholinergic muscarinic suppression of the excitatory adrenergic neurotransmission. Significant amounts of ACh (0.81 +/- 0.18 micrograms g-1) are present in the muscle, and it contains strongly AChE positive nerve fibres and nerve cell bodies. It is concluded that the goat rp is innervated by sympathetic adrenergic excitatory nerves and parasympathetic NANC inhibitory nerves. It further has a direct sympathetic inhibitory NANC innervation, and an indirect inhibitory cholinergic innervation which at least in part is sympathetic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1748-1716.1993.tb09516.x | DOI Listing |
Front Synaptic Neurosci
December 2024
Laboratory of Physiology, Department of Medicine, University of Patras, Patras, Greece.
β-adrenergic receptors (β-ARs) play a critical role in modulating learning, memory, emotionality, and long-term synaptic plasticity. Recent studies indicate that β-ARs are necessary for long-term potentiation (LTP) induction in the ventral hippocampus under moderate synaptic activation conditions that do not typically induce LTP. To explore potential dorsoventral differences in β-AR-mediated effects, we applied the β-AR agonist isoproterenol (10 μM, 30 min) to dorsal and ventral hippocampal slices, recording field excitatory postsynaptic potentials (fEPSPs) and population spikes (PSs) from the CA1 region.
View Article and Find Full Text PDFNeuropharmacology
March 2025
- Department of Psychopharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia. Electronic address:
Background: Apathy is a syndrome of decreased goal-directed activity, one of the main features of different brain disorders. Despite its high prevalence and life-threatening potential, there are currently very few options for its pharmacological treatment, which may be related to the lack of valid animal models.
Aims: The vesicular monoamine transporter 2 inhibitor tetrabenazine (TBZ) was used in this study to model apathy-related behavior in pathologies linked to a depletion of dopamine.
Cell Rep
December 2024
College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China. Electronic address:
The association between drug-induced rewards and environmental cues represents a promising strategy to address addiction. However, the neural networks and molecular mechanisms orchestrating methamphetamine (MA)-associated memories remain incompletely characterized. In this study, we demonstrated that AdipoRon (AR), a specific adiponectin receptor (AdipoR) agonist, inhibits the formation of MA-induced conditioned place preference (CPP) in MA-conditioned mice, accompanied by suppression of basolateral amygdala (BLA) CaMKIIα neuron activity.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA.
Aging affects virtually all organs of the body, but perhaps it has the most profound effects on the brain and its neurotransmitter systems, which influence a wide range of crucial functions, such as attention, focus, mood, neuroendocrine and autonomic functions, and sleep cycles. All of these essential functions, as well as fundamental cognitive processes such as memory, recall, and processing speed, utilize neuronal circuits that depend on neurotransmitter signaling between neurons. Glutamate (Glu), the main excitatory neurotransmitter in the CNS, is involved in most neuronal excitatory functions, including release of the neurotransmitter norepinephrine (NE).
View Article and Find Full Text PDFPrim Care Companion CNS Disord
November 2024
Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.
To provide an updated summary of the literature on dextromethorphan quinidine for the treatment of agitation in dementia. PubMed, Medline, APA PsycINFO, Embase, and Cochrane Collaboration were searched from inception to January 7, 2024 using the keywords , , and . The search was limited to the English language and human subjects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!