The 1H hyperfine tensors of the dimanganese(III,IV) oxidation state of the non-heme-type catalase enzyme from the thermophilic bacterium Thermus thermophilus have been measured by electron nuclear double resonance (ENDOR) spectroscopy at pH 6.5-9. These were compared to model dimanganese(III,IV) complexes possessing six-coordinate N4O2, N3O3, and O6 atom donor sets to each Mn and mu-oxo and mu-carboxylato bridging ligands. The lack of 14N hyperfine couplings in the enzyme suggests either O6 or O5N ligand donors to each Mn. Moreover, the two sigma coordination sites on Mn(III) directed at the dz2 orbital cannot be occupied by N ligands. The 1H ENDOR spectrum revealed two types of anisotropic tensors, attributable to two D2O-exchangeable protons on the basis of the magnitude of the electron paramagnetic resonance (EPR) line narrowing in D2O. All six of the 1H hyperfine couplings are proposed to arise from a single displaceable water molecule in the active site, on the basis of their reversible disappearance, upon incubation in D2O or by precipitation from ammonium sulfate, and by simulation of the 1H ENDOR spectrum. The Mn ions are coordinated predominantly by nonmagnetic O atoms lacking covalently bound protons in both alpha and beta positions. This implicates predominantly carboxylato-type ligands (Asp and Glu) and possibly a di-mu-oxo bridge between Mn ions. The latter is supported also by the presence of strong antiferromagnetic coupling. Comparison to other dimetalloproteins also possessing the four-helix bundle structural motif shows that the polyoxo(carboxylato) coordination in catalase differs significantly from the polyhistidine coordination adopted by the diiron(II,II) site in the O2-binding protein myohemerythrin, but resembles the polycarboxylato ligation adopted by the diiron(III,III) site of ribonucleotide reductase. The catalase 1H ENDOR spectrum is essentially identical to that for the exchangeable protons in the active site of the diiron(II,III) state of uteroferrin, an acid phosphatase [Doi et al. (1988) J. Biol. Chem. 263, 5757-5763], and also for a polycarboxylato complex possessing the Mn2(mu-O)2 core with H-bonded water ligands. The 1H ENDOR line shape in catalase could be simulated using a theoretical model suitable for multispin clusters. It treats the two Mn spins as point dipoles which are exchange-coupled. It includes both dipolar and isotropic ligand hyperfine couplings. Using this model, the position of the proton with the largest interaction could be located with respect to the Mn-Mn vector because of the extreme sensitivity of line shape to position.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00069a028 | DOI Listing |
Biochemistry
March 2025
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Base editing is a common mechanism by which organisms expand their genetic repertoire to access new functions. Here, we explore the mechanism of tRNA recognition in the bacterial deaminase TadA, which exclusively recognizes tRNA and converts the wobble base adenosine (A34) to inosine. We quantitatively evaluate the dynamics of tRNA binding by incorporating the fluorescent adenine analogue 2-aminopurine (2-AP) at position 34 in the wobble base of the anticodon loop.
View Article and Find Full Text PDFLangmuir
March 2025
Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province. School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China.
The photoelectrochemical properties of hematite-based photoanodes are hindered by severe carrier recombination and poor reaction activity, which is a major challenge. Herein, we coupled zirconium-doped α-FeO (Zr:FeO) and phosphating cobalt molybdate electrocatalyst (P-CoMoO) to ameliorate the above difficulties. The conductivity and carrier density of hematite significantly increase by Zr doping.
View Article and Find Full Text PDFNeuropharmacology
March 2025
Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom. Electronic address:
The paraventricular thalamus (PVT) is a central node in the integration of stress- and reward-related information that may serve as a pivotal site for opioid receptors to exert their effects. Kappa opioid receptors (KOPrs) and mu opioid receptors (MOPrs) have dissociable and opposing roles in circuits of stress and reward. Interestingly, both are highly expressed in the PVT, however it is not known how aversive KOPr and rewarding MOPr signalling converges to dictate PVT activity and, by proxy, whole brain effects.
View Article and Find Full Text PDFBiochimie
March 2025
Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran. Electronic address:
L-asparaginase is a critical therapeutic enzyme for treating acute lymphoblastic leukemia (ALL), a common childhood malignancy. In this study, the L-asparaginase coding sequence from halophilic Vibrio sp. (GBPx3) was cloned, expressed in Escherichia coli, and characterized.
View Article and Find Full Text PDFEur J Pharm Sci
March 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria; Canal El Mahmoudia St., Alexandria 21648, Egypt. Electronic address:
In the current medical era, the proliferation and dissemination of drug-resistant strains of Mycobacterium tuberculosis continue to pose a significant worldwide health hazard, necessitating the development of new and innovative medications to combat tuberculosis. Decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) is a crucial enzyme for cell wall synthesis in Mycobacterium tuberculosis (Mtb). Its importance is due to its eminent contribution in forming lipoarabinomannan and arabinogalactan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!