Phytase catalyzes the hydrolysis of phytate (myo-inositol hexakisphosphate) to myo-inositol and inorganic phosphate. A gene (phyA) of Aspergillus niger NRRL3135 coding for extracellular, glycosylated phytase was isolated using degenerate oligodeoxyribonucleotides deduced from phytase amino acid (aa) sequences. Nucleotide (nt) sequence analysis of the cloned region revealed the presence of an open reading frame coding for 467 aa and interrupted once by an intron of 102 bp in the 5' part of the gene. The start codon is followed by a sequence coding for a putative signal peptide. Expression of phyA is controlled at the level of mRNA accumulation in response to inorganic phosphate levels. After cell growth in low-phosphate medium, a transcript of about 1.8 kb was visualized. Transcription of phyA initiates at at least seven start points within a region located 45-25 nt upstream from the start codon. In transformants of A. niger, expression of multiple copies of phyA resulted in up to more than tenfold higher phytase levels than in the wild-type strain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0378-1119(93)90620-iDOI Listing

Publication Analysis

Top Keywords

gene phya
8
phya aspergillus
8
aspergillus niger
8
inorganic phosphate
8
start codon
8
phya
5
cloning characterization
4
characterization overexpression
4
overexpression phytase-encoding
4
phytase-encoding gene
4

Similar Publications

TANDEM ZINC-FINGER/PLUS3: a multifaceted integrator of light signaling.

Trends Plant Sci

December 2024

School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. Electronic address:

TANDEM ZINC-FINGER/PLUS3 (TZP) is a nuclear-localized protein with multifaceted roles in modulating plant growth and development under diverse light conditions. The unique combination of two intrinsically disordered regions (IDRs), two zinc-fingers (ZFs), and a PLUS3 domain provide a platform for interactions with the photoreceptors phytochrome A (phyA) and phyB, light signaling components, and nucleic acids. TZP controls flowering and hypocotyl elongation by regulating gene expression and protein abundance in a blue, red, or far-red light-specific context.

View Article and Find Full Text PDF

Phytochrome alleviates cadmium toxicity by regulating gibberellic acid and brassinolide in Nicotiana tabacum.

Plant Physiol Biochem

December 2024

Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China. Electronic address:

Soil cadmium (Cd) pollution has emerged as a substantial environmental challenge globally, hampering crop production and endangering human health. Here, we found that photoreceptor phytochromes (PHYs) were involved in regulating Cd tolerance in tobacco. Compared to wildtype (WT) plants, phytochrome-defective mutants (phyA, phyB, phyAB) displayed Cd sensitive phenotype, and had a higher reactive oxygen species (ROS) accumulation and malondialdehyde content.

View Article and Find Full Text PDF

The Arabidopsis RING-Type E3 Ligase TEAR4 Controls Seed Germination by Targeting RGA for Degradation.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.

Light and DELLA proteins are central factors controlling seed germination which is critical for seed plant survival and agricultural production. However, the mechanisms underlying DELLA degradation under different light conditions during seed germination remain to be clarified. Here, it is reported that TIE1-ASSOCIATED RING-TYPE E3 LIGASE4 (TEAR4) and other TEARs redundantly promote DELLA degradation to positively regulate seed germination in Arabidopsis.

View Article and Find Full Text PDF

Red Light Responsive Cre Recombinase for Bacterial Optogenetics.

ACS Synth Biol

December 2024

Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.

Optogenetic tools have been used in a wide range of microbial engineering applications that benefit from the tunable, spatiotemporal control that light affords. However, the majority of current optogenetic constructs for bacteria respond to blue light, limiting the potential for multichromatic control. In addition, other wavelengths offer potential benefits over blue light, including improved penetration of dense cultures and reduced potential for toxicity.

View Article and Find Full Text PDF

FAR-RED IMPAIRED RESPONSE 1 (FAR1) is a class of transposase-derived transcription factors that play a very important role in the initiation of the photosensitive pigment A (phyA) signaling pathway. Despite their importance, the understanding of the function of FAR1 genes in quinoa is still limited, especially regarding how they affect the spike sprouting response. Quinoa has gained global attention in recent years for its health benefits and potential for sustainable agriculture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!