The spectral energy-dependence of the radiation-induced ESR signal has been studied in ovine cortical bone. Crushed bone samples were irradiated using photon beams with effective energies in the range from 0.06 to 6 MeV, and electron beams with mean energies in the range from 2 to 10 MeV. The photon and electron data were normalized to a dose to bone of 50 Gy and the results are reported as response relative to the ESR signal for photon irradiation at 1.25 MeV (60Co). The photon irradiation results show that the ESR response is greatest at low energies with a relative value of 1.2 at 0.06 MeV. The relative response decreases, as the energy increases, to approximately 0.85 in the region of 2 to 3 MeV. These variations in the relative ESR responses are significantly less than the ESR energy-dependent responses reported in the literature for human tooth enamel and synthetic hydroxyapatite. An explanation for this difference is offered. For electron beam irradiations, the ESR signal is fairly constant with energy, and approximately equal to that at a photon energy of 1.25 MeV. Implications of these results are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0969-8043(93)90204-n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!