Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells.

Nucleic Acids Res

Département de Biochimie des Glycoconjugués et Lectines Endogènes, CNRS, Université d'Orléans, France.

Published: February 1993

Plasmid DNA/glycosylated polylysine complexes were used to transfer in vitro a luciferase reporter gene into human hepatoma cells by a receptor-mediated endocytosis process. HepG2 cells which express a galactose specific membrane lectin were efficiently and selectively transfected with pSV2Luc/lactosylated polylysine complexes in a sugar dependent manner: i) HepG2 cells which do not express membrane lectin specific for mannose were quite poorly transfected with pSV2Luc/mannosylated polylysine complexes, ii) HeLa cells which do not express membrane lectin specific for galactose were not transfected with pSV2Luc/lactosylated polylysine complexes. The transfection efficiency of HepG2 cells with pSV2Luc/lactosylated polylysine complexes was greatly enhanced either in the presence of chloroquine or in the presence of a fusogenic peptide. A 22-residue peptide derived from the influenza virus hemagglutinin HA2 N-terminal polypeptide that mimics the fusogenic activity of the virus, was selected. In the presence of the fusogenic peptide, the luciferase activity in HepG2 cells was 10 fold larger than that of cells transfected with pSV2Luc/lactosylated polylysine complexes in the presence of chloroquine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC309219PMC
http://dx.doi.org/10.1093/nar/21.4.871DOI Listing

Publication Analysis

Top Keywords

polylysine complexes
24
hepg2 cells
16
psv2luc/lactosylated polylysine
16
cells express
12
membrane lectin
12
transfected psv2luc/lactosylated
12
cells
8
hepatoma cells
8
express membrane
8
lectin specific
8

Similar Publications

Development of a StIW111C-based bioresponsive pore-forming conjugate for permeabilizing the endosomal membrane.

Int J Biol Macromol

January 2025

Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:

Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.

View Article and Find Full Text PDF

Compartmentalized models with coupled catalytic networks are considered as "protocells" in the context of research related to the origin of life. To model the kinetics of a simple cellular uptake-metabolism process, we use a compartmentalized protocell system that combines liposome-encapsulated intravesicular reporter pairs with co-encapsulated enzymes to monitor the membrane transport of a substrate (analyte uptake) and its subsequent enzymatic reaction inside the vesicles (metabolism to the product). The intravesicular chemosensing ensembles consist of the macrocycles cucurbit[7]uril or p-sulfonatocalix[4]arene and matching fluorescent dyes to set up suitable reporter pairs.

View Article and Find Full Text PDF

Complex wound closure scenarios necessitate the development of advanced wound dressings that can effectively address the challenges of filling irregularly shaped wounds and managing fatigue failures encountered in daily patient activities. To tackle these issues, we develop a multifunctional hydrogel from natural polysaccharides and polypeptides with injectability and self-healing properties for promoting full-time and multipurpose wound healing. Synthesized through dynamic Schiff base linkages between oxidized hyaluronic acid (OHA), ε-polylysine (ε-PL), and quaternized chitosan (QCS), the OHA/ε-PL/QCS hydrogel can gel rapidly within 50 s.

View Article and Find Full Text PDF

Sticky Polyelectrolyte Shield for Enhancing Biological Half-Life of Growth Factors.

ACS Appl Mater Interfaces

January 2025

Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea.

Delivery of secretomes, which includes growth factors, cytokines, and mRNA, is critical in regenerative medicine for cell-to-cell communication. However, the harsh in vivo environment presents significant challenges for secretome delivery. Proteolytic enzymes shorten secretomes' half-lives, and secretomes tend to rapidly diffuse at defect sites.

View Article and Find Full Text PDF

Formation of Poly-L-Lysine-Porphyrin Derivative Complex Exhibiting Diminished Dark Toxicity in Aqueous Solutions and High Photodynamic Activity.

Chembiochem

January 2025

Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan.

Poly-L-lysine (PLL) displays a high solubilizing ability for hydrophobic guest molecules, and when in complexes with guest molecules, it exhibits a high intracellular uptake. However, its high cytotoxicity, originating from its cationic character, significantly limits its applications in biological and medicinal chemistry. In this study, the amount of free PLL in an aqueous solution of a PLL-porphyrin complex was immensely reduced, resulting in considerably lower dark toxicity than that of the free PLL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!