These experiments analyse the phase-dependent properties of spontaneous oscillations of the sarcoplasmic reticulum (SR) induced by Ca2+ overload. Right atrial tissue was loaded with intracellular Ca2+ by exposure to a modified Tyrode solution containing 50% of normal Na+ and 0.5 mM K+. Verapamil (2 microM) was added to block regenerative activity. Intracellular Ca2+ overload elicited spontaneous, rhythmic voltage and tension oscillations that were phase locked 1:1. Voltage and tension oscillations were abolished by exposure to low (0.9 mM) external Ca2+, 1 microM ryanodine, or 10 mM caffeine, indicating that both voltage and tension oscillations resulted from spontaneous oscillations in SR Ca2+ release. Single pulses of nerve-stimulated ACh release elicited phase shifts in both voltage and tension oscillations. Sinusoidal current was used as a periodic stimulus to drive membrane voltage and elicit periodic voltage oscillations. Stimulated voltage oscillations entrained spontaneous tension oscillations 1:1 in a range of frequencies close to the basic spontaneous SR oscillatory cycle length, or 2:1 at frequencies close to one-half the spontaneous SR oscillatory cycle length. Stimulation frequencies between these two regions entrained tension oscillations in predictable fixed coupled ratios (4:3, 3:2) and resulted in Wenckeback-like voltage patterns. Stimulation frequencies between phase-locked regions resulted in complex coupling relationships and irregular voltage patterns. Exposure to 1 microM ryanodine, 0.9 mM external Ca2+, or 10 mM caffeine abolished irregular voltage patterns and tension. We conclude that the SR oscillator exhibits phase-dependent sensitivity to perturbations at the surface membrane. As a result, external perturbations can elicit phase differences between spontaneous SR oscillations and membrane voltage that cause either phase-locked or irregular voltage patterns. These findings identify an intracellular mechanism that may contribute to the development of cardiac dysrhythmias resulting from intracellular Ca2+ overload.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/expphysiol.1993.sp003672 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!