A modification of "reverse chromosome painting" was carried out using genomic DNA from tumor cells as a complex probe for chromosomal in situ suppression hybridization to normal metaphase chromosome spreads. Amplified DNA sequences contained in such probes showed specific signals, revealing the normal chromosome positions from which these sequences were derived. As a model system, genomic DNAs were analyzed from three tumor cell lines with amplification units including the proto-oncogene c-myc. The smallest amplification unit was about 90 kb and was present in 16-24 copies; the largest unit was bigger than 600 kb and was present in 16-32 copies. Specific signals that co-localized with a differently labeled c-myc probe on chromosome band 8q24 were obtained with genomic DNA from each cell line. In further experiments, genomic DNA derived from primary tumor material was used in the case of a male patient with glioblastoma multiforme (GBM). Southern blot analysis using an epidermal growth factor receptor gene (EGFR) probe that maps to 7p13 indicated the amplification of sequences from this gene. Using reverse chromosome painting, signals were found both on band 7p13 and bands 12q13-q15. Notably, the signal on 12q13-q15 was consistently stronger. The weaker 7p13 signal showed co-localization with the major signal of the differently labeled EGFR probe. A minor signal of this probe was seen on 12q13, suggesting cross-hybridization to ERB3 sequences homologous to EGFR. The results indicate co-amplification of sequences from bands 12q13-q15, in addition to sequences from band 7p13. Several oncogenes map to 12q13-q15 providing candidate genes for a tumor-associated proto-oncogene amplification. Although the nature of the amplified sequences needs to be clarified, this experiment demonstrates the potential of reverse chromosome painting with genomic tumor DNA for rapidly mapping the normal chromosomal localization of the DNA from which the amplified sequences were derived. In addition, a weaker staining of chromosomes 10 and X was consistently observed indicating that these chromosomes were present in only one copy in the GBM genome. This rapid approach can be used to analyze cases where no metaphase spreads from the tumor material are available. It does not require any preknowledge of amplified sequences and can be applied to screen large numbers of tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00202475 | DOI Listing |
Sci Rep
December 2024
Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan.
In order to elucidate novel actions of degalactosylated whey protein (D-WP) in comparison with intact whey protein (WP), the effects of oral intake of D-WP on peripheral blood telomere length and telomerase were examined in young and aged mice. In young mice, peripheral blood telomere length was significantly elongated following oral intake of D-WP for 4 weeks. mRNA expression of both telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) was significantly increased in the peripheral blood following oral intake of D-WP for 4 weeks.
View Article and Find Full Text PDFJ Chin Med Assoc
December 2024
Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
Background: COVID-19, caused by the SARS-CoV-2 virus, presents with varying severity among individuals. Both viral and host factors can influence the severity of acute and chronic COVID-19, with chronic COVID-19 commonly referred to as long COVID. SARS-CoV-2 infection can be properly diagnosed by performing real-time reverse transcription PCR analysis of nasal swab samples.
View Article and Find Full Text PDFCurr Biol
December 2024
The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
Serine 31 is a phospho-site unique to the histone H3.3 variant; mitotic phospho-Ser31 is restricted to pericentromeric heterochromatin, and disruption of phospho-Ser31 results in chromosome segregation defects and loss of p53-dependant G cell-cycle arrest. Ser31 is proximal to the H3.
View Article and Find Full Text PDFCell Death Dis
December 2024
Division of Medical Sciences, National Cancer Centre Singapore, 30 Hospital Blvd, 168583, Singapore, Singapore.
Radiotherapy is an integral modality in treating human cancers, but radioresistance remains a clinical challenge due to the involvement of multiple intrinsic cellular and extrinsic tumour microenvironment factors that govern radiosensitivity. To study the intrinsic factors that are associated with cancer radioresistance, we established 4 radioresistant prostate (22Rv1 and DU145) and head and neck cancer (FaDu and HK1) models by irradiating their wild-type parentals to 90 Gy, mimicking the fractionated radiotherapy schema that is often using in the clinic, and performed whole exome and transcriptome sequencing of the radioresistant and wild-type models. Comparative genomic analyses detected the enrichment of mismatch repair mutational signatures (SBS6, 14, 15, 20) across all the cell lines and several non-synonymous single nucleotide variants involved in pro-survival pathways.
View Article and Find Full Text PDFCell Biol Toxicol
December 2024
Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
Centromere protein M (CENPM), traditionally associated with chromosome segregation, is now recognized for its significant role in cancer biology. Particularly in glioblastoma (GBM), where less is known about CENPM compared to other centromere proteins (CENPs), it appears crucially involved in regulating tumor cell proliferation, invasion, and metabolic reprogramming-key factors in GBM's aggressiveness. Initial analyses using the GEPIA database (TCGA/GTEx datasets) reveal distinct patterns of CENPM expression in GBM, suggesting its potential as a therapeutic target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!