Essential herpesvirus glycoproteins are involved in membrane fusion processes during infection, e.g., viral penetration and direct cell-to-cell transmission. We previously showed that the gD-homologous glycoprotein gp50 of pseudorabies virus (PrV) is essential for virus entry into target cells but proved to be dispensable for direct viral cell-to-cell spread in cell culture (I. Rauh and T. C. Mettenleiter, J. Virol. 65:5348-5456, 1991). For gp50-negative (gp50-) viruses, after phenotypic complementation necessary for primary infection, the only means of viral spread is by way of direct cell-to-cell transmission. In contrast, virus mutants lacking the essential gB-homologous glycoprotein gII after phenotypic complementation are only able to infect primary target cells and are blocked in further viral spread. To analyze how these in vitro phenotypes translate into virus replication in the animal, mice were infected intranasally with gp50- or gII- PrV mutants after prior phenotypic complementation by propagation on cell lines providing the essential glycoprotein in trans. Our results show that whereas the gII- mutants did not cause disease or any symptoms, gp50- mutants derived from two different PrV strains were fully virulent, with animals exhibiting severe symptoms ultimately leading to death. However, free infectious virus could not be recovered from either gp50- or gII- PrV-infected animals. We conclude that direct cell-to-cell transmission as the only means of viral spread of the gp50- mutants is sufficient for a full virulent phenotype in mice. After infection of pigs with phenotypically complemented gp50- PrV, only mild symptoms were observed, whereas the gII- mutant was totally avirulent. In both cases, shedding of infectious virus did not occur, in contrast to results with animals infected by gX- PrV that showed severe signs of disease and extensive virus shedding. After challenge infection with the highly virulent NIA-3 strain, the previously gII- PrV-infected animals exhibited severe symptoms, whereas the gp50- PrV-infected pigs showed a significant level of protection. In conclusion, vaccination with a PrV mutant lacking glycoprotein gp50, which is unable to spread between animals because of a lack of formation of free infectious virions, can confer on pigs protection against challenge infection. These results provide the basis for the development of new, nonspreading live herpesvirus vaccines based on gp50- PrV mutants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC237523PMC
http://dx.doi.org/10.1128/JVI.67.3.1529-1537.1993DOI Listing

Publication Analysis

Top Keywords

direct cell-to-cell
12
cell-to-cell transmission
12
phenotypic complementation
12
viral spread
12
virus
8
pseudorabies virus
8
nonspreading live
8
live herpesvirus
8
infection viral
8
glycoprotein gp50
8

Similar Publications

Extracellular vesicles (EVs) are secreted by almost all cell types and contain DNA, RNA, proteins, lipids and other metabolites. EVs were initially believed to be cellular waste but now recognized for their role in cell-to-cell communication. Later, EVs from immune cells were discovered to function similarly to their parent cells, paving the way for their use as gene and drug carriers.

View Article and Find Full Text PDF

Gastric cancer mesenchymal stem cells upregulate PD-1 expression on the CD8 T cells by regulating the PI3K/AKT pathway.

Mol Immunol

January 2025

Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Oncology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China; School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. Electronic address:

Gastric cancer mesenchymal stem cells (GC-MSCs) are a crucial component of the gastric cancer microenvironment, exerting a pivotal influence on the formation of a suppressive immune microenvironment and the progression of gastric cancer. In this study, we utilized GC-MSCs to co-culture peripheral blood mononuclear cells (PBMCs) obtained from both gastric cancer patients and healthy individuals in a proportionate manner by direct cell-to-cell contact. Our findings reveal that co-culture of GC-MSCs with PBMCs led to a notable reduction in CD8 T cells percentages and an increase in surface PD-1 expression levels on CD8 T cells.

View Article and Find Full Text PDF

miR-224 activates cancer-associated fibroblasts to enhance lung cancer cell migration and invasion by targeting Akirin1.

Sci Rep

January 2025

Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea.

Cancer-associated fibroblasts (CAFs) actively contribute to the formation of tumor-supportive microenvironments, thereby promoting cancer progression and impacting therapeutic outcomes. This study utilized global microRNA (miRNA) expression profiling to identify specific miRNAs responsible for reprogramming normal lung fibroblasts (LFs) into CAFs. miR-224 demonstrates increased expression in CAFs, and its levels are elevated in lung tumors compared to those in normal tissues, according to data from public databases.

View Article and Find Full Text PDF

In-situ profiling of glycosylation on single cells with surface plasmon resonance imaging.

Nat Commun

January 2025

Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.

Cellular glycosylation is crucial for cell recognition, signal transduction, and the development of various diseases, especially in tumor initiation, progression, and metastasis. Current glycosylation profiling methods normally involve laborious sample processing and labeling and lack in-situ quantitative analysis. Here, we present a direct optical method to investigate and quantify the glycan expression on single cells based on lectin-glycan kinetic quantification with plasmonic imaging.

View Article and Find Full Text PDF

Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!