The effect of hypoxia on the structure and function of the synaptosomal membranes and myelin fraction (glial cells, neuronal cells bodies and axonal membranes) was investigated by measuring Na+,K(+)-ATPase activity and levels of lipid peroxidation products in cerebral cortical synaptosomal membranes and myelin fractions obtained from newborn piglets. Hypoxic hypoxia was induced and cerebral hypoxia was documented as a decrease in the ratio of phosphocreatine to inorganic phosphate (PCr/Pi) using 31P-NMR spectroscopy. PCr/Pi decreased from baseline of 2.93 +/- 0.76 to 0.61 +/- 0.36 during hypoxia. The synaptosomal membrane Na+,K(+)-ATPase activity decreased from a control value of 56.6 +/- 3.7 to 40.4 +/- 6.0 mumol Pi/mg protein/h during hypoxia. The level of conjugated dienes increased from zero (reference value) to 4.5 +/- 2.7 nmol/mg lipid and the level of fluorescent compounds increased from 23.5 +/- 2.2 to 92.6 +/- 46.4 ng quinine sulfate/mg lipid in the synaptosomal membranes during hypoxia. No change in myelin fraction Na+,K(+)-ATPase activity or levels of lipid peroxidation products were noted. These data indicate that synaptosomal membranes, rich in polyunsaturated fatty acids, are more susceptible to oxygen free radical mediated lipid peroxidative damage during hypoxia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-8993(93)91388-9DOI Listing

Publication Analysis

Top Keywords

synaptosomal membranes
16
na+k+-atpase activity
12
synaptosomal membrane
8
cerebral cortical
8
hypoxia
8
newborn piglets
8
membranes myelin
8
myelin fraction
8
activity levels
8
levels lipid
8

Similar Publications

Adeno-associated virus (AAV) expresses a membrane-associated accessory protein (MAAP), a small nonstructural protein, that facilitates AAV secretion out of the plasma membrane through an association with extracellular vesicles during AAV egress. Here, we investigated the host proteins that interact with AAV2 MAAP (MAAP2) using APEX2-mediated proximity labeling. We identified two SNARE proteins, Syntaxin 7 (STX7) and synaptosome-associated protein 23 (SNAP23), a vesicle (v-)SNARE and a target (t-)SNARE, respectively, that mediate intracellular trafficking of membrane vesicles aand exhibited associations with MAAP2 in HEK293 cells.

View Article and Find Full Text PDF

In corticostriatal nerve terminals, glutamate release is stimulated by adenosine via A receptors (ARs) and simultaneously inhibited by endocannabinoids via CB receptors (CBRs). We previously identified presynaptic AR-CBR heterotetrameric complexes in corticostriatal nerve terminals. We now explored the possible functional interaction between ARs and CBRs in purified striatal GABAergic nerve terminals (synaptosomes) and compared these findings with those on the release of glutamate.

View Article and Find Full Text PDF

: Omega-3 long-chain polyunsaturated fatty acids (PUFAs) support brain cell membrane integrity and help mitigate synaptic plasticity deficits. The endocannabinoid system (ECS) is integral to synaptic plasticity and regulates various brain functions. While PUFAs influence the ECS, the effects of omega-3 on the ECS, cognition, and behavior in a healthy brain remain unclear.

View Article and Find Full Text PDF

Single-nucleotide polymorphism analysis accurately predicts multiple impairments in hippocampal activity and memory performance in a murine model of idiopathic autism.

Sci Rep

January 2025

Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.

Autism spectrum disorder (ASD) comprises alterations in brain anatomy and physiology that ultimately affect information processing and behavior. In most cases, autism is considered idiopathic, involving alterations in numerous genes whose functions are not extensively documented. We evaluated the C58/J mouse strain as an idiopathic model of ASD, emphasizing synaptic transmission as the basis of information processing.

View Article and Find Full Text PDF

Natural terpenes II. Concentration-dependent profile of effects on dynamic organization of biological and model membranes.

Biochem Biophys Res Commun

January 2025

Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT). Córdoba, Argentina. Electronic address:

Monoterpenes (MTs), the major constituents of plant essential oils, cover a broad spectrum of biological activities through their interaction with biomembranes. MTs are highly hydrophobic substances with a net electrical dipole, but are not clearly amphipathic. As a result, they aggregate at increasing concentrations in aqueous media, and in membrane environments their behavior changes from dynamics modulators to disruptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!