High-resolution three-dimensional structures of bovine pancreatic ribonuclease A in aqueous solution have been determined by nuclear magnetic resonance (NMR) spectroscopy combined with restrained molecular dynamics calculations. The structures are based on: (1) 464 interproton distance constraints with accurate upper and lower limits, determined from build-up rates of nuclear Overhauser effects (NOE) by using the complete relaxation matrix; (2) 999 more approximate upper limits for interproton distances; and (3) 42 dihedral angle constraints (37 for phi and 5 for chi 1). A total of 16 structures were calculated, which show a root-mean-square (r.m.s.) deviation of 0.66 A for the backbone atoms and 1.68 A for all heavy-atoms. The converged structures are highly similar to those found in the crystal state. r.m.s. deviation of backbone atom positions in the crystal as compared to those in the average solution structure is 0.92 A. Observed differences are concentrated in loop regions and in the neighborhood of His119 and His48 side-chains. Dynamic aspects, such as H/D amide proton exchange and side-chain mobility have been examined.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.1993.1075DOI Listing

Publication Analysis

Top Keywords

high-resolution three-dimensional
8
nuclear magnetic
8
magnetic resonance
8
rms deviation
8
three-dimensional structure
4
structure ribonuclease
4
ribonuclease solution
4
solution nuclear
4
resonance spectroscopy
4
spectroscopy high-resolution
4

Similar Publications

The aim was to measure sphenoid sinus volume on the basis of computed tomography data post processing and to investigate the possible relationship with age, gender and mastoid pneumatization. Sphenoid sinus volume was measured using the semi-automatic post processing algorithm of MSCT DICOM datasets of 66 patients. There were 35 female and 31 male subjects.

View Article and Find Full Text PDF

Terrestrial laser scanners (TLS) are portable dimensional measurement instruments used to obtain 3D point clouds of objects in a scene. While TLSs do not require the use of cooperative targets, they are sometimes placed in a scene to fuse or compare data from different instruments or data from the same instrument but from different positions. A contrast target is an example of such a target; it consists of alternating black/white squares that can be printed using a laser printer.

View Article and Find Full Text PDF

Protein-Protein Interaction (PPI) prediction plays a pivotal role in understanding cellular processes and uncovering molecular mechanisms underlying health and disease. Structure-based PPI prediction has emerged as a robust alternative to sequence-based methods, offering greater biological accuracy by integrating three-dimensional spatial and biochemical features. This work summarizes the recent advances in computational approaches leveraging protein structure information for PPI prediction, focusing on machine learning (ML) and deep learning (DL) techniques.

View Article and Find Full Text PDF

Cell-matrix interactions, mediated by cellular force and matrix remodeling, result in dynamic reciprocity that drives numerous biological processes and disease progression. Currently, there is no available method for directly quantifying cell traction force and matrix remodeling in three-dimensional matrices as a function of time. To address this long-standing need, we developed a high-resolution microfabricated device that enables longitudinal measurement of cell force, matrix stiffness and the application of mechanical stimulation (tension or compression) to cells.

View Article and Find Full Text PDF

The pulmonary vasculature plays a pivotal role in the development and progress of chronic lung diseases. Due to limitations of conventional two-dimensional histological methods, the complexity and the detailed anatomy of the lung blood circulation might be overlooked. In this study, we demonstrate the practical use of optical serial block face imaging (SBFI), ex vivo microcomputed tomography (micro-CT), and nondestructive optical tomography for visualization and quantification of the pulmonary circulation's 3D architecture from macro- to micro-structural levels in murine lung samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!