Plasma-sprayed ceramic coatings of fluorapatite (FA), magnesiumwhitlockite (MW), and hydroxylapatite (HA), and noncoated Ti-6Al-4V alloy (Ti) implants were evaluated histologically and histomorphometrically in a goat animal study. Cylindrical Ti-6Al-4V plugs were plasma-spray-coated with FA, MW, and HA. Noncoated, grit-blasted Ti plugs served as controls. The plugs were implanted into the right femur and left humerus of 20 adult goats. The results were evaluated using descriptive histology and histomorphometry. The histomorphometry consisted of measurements of bone apposition and coating thickness. The results demonstrated that FA showed a high amount of bone apposition without signs of degradation or dissolution. MW showed considerable reduction in thickness and at 12 weeks an adverse tissue reaction. However, at 25 weeks the amount of bone apposition was significantly increased compared with the 12-week implants. HA revealed considerable and progressive reduction in thickness and at 25 weeks a lower amount of bone apposition than FA and MW. At 12 weeks the Ti implants did reveal bone apposition, although frequently localized fibrous tissue was visible. At 25 weeks the Ti implants did not differ in bone apposition from the HA implants. Further studies are necessary on the effect of degradation or dissolution of HA on the compatibility with bone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.820270116 | DOI Listing |
Orthod Craniofac Res
January 2025
Department of Health Sciences, School of Dentistry, Magna Graecia University of Catanzaro, Catanzaro, Italy.
Objective: This retrospective study aimed to evaluate morphometric changes in mandibular condyles of patients with skeletal Class III malocclusion following two-jaw orthognathic surgery planned using virtual surgical planning (VSP) and analysed with automated three-dimensional (3D) image analysis based on deep-learning techniques.
Materials And Methods: Pre-operative (T1) and 12-18 months post-operative (T2) Cone-Beam Computed Tomography (CBCT) scans of 17 patients (mean age: 24.8 ± 3.
Calcif Tissue Int
January 2025
Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA.
This study assessed the feasibility of miR17 ~ 92-based antiresorptive strategy by determining the effects of conditional transgenic (cTG) overexpression of miR17 ~ 92 in myeloid cells on bone and osteoclasts. Osteoclasts of male and female cTG mutant mice each showed 3- to fivefold overexpression of miR17 ~ 92 cluster genes compared to those of age- and sex-matched wildtype (WT) littermates. Male but not female cTG mutant mice had more trabecular and cortical bones as well as lower bone resorption reflected by reduction in osteoclast number and resorbing surface.
View Article and Find Full Text PDFExp Mol Med
January 2025
Department of Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, 41940, Republic of Korea.
DOCK5 (dedicator of cytokinesis 5), a guanine nucleotide exchange factor for Rac1, has been implicated in BMP2-mediated osteoblast differentiation, but its specific role in osteogenesis and bone regeneration remained unclear. This study investigated the effect of DOCK5 on bone regeneration using C21, a DOCK5 chemical inhibitor, and Dock5-deficient mice. Osteoblast differentiation and bone regeneration were analyzed using bone marrow mesenchymal stem cells (BMSCs) and various animal models.
View Article and Find Full Text PDFGels
November 2024
Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata-shi 573-1121, Osaka, Japan.
Bone tissue engineering is a technique that simulates the bone tissue microenvironment by utilizing cells, tissue scaffolds, and growth factors. The collagen hydrogel is a three-dimensional network bionic material that has properties and structures comparable to those of the extracellular matrix (ECM), making it an ideal scaffold and drug delivery system for tissue engineering. The clinical applications of this material are restricted due to its low mechanical strength.
View Article and Find Full Text PDFAnimal Model Exp Med
December 2024
Orthopedic Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Background: Zinc-finger E-box-binding homeobox-1 (ZEB1) is predominantly found in type-H vessels. However, the roles of ZEB1 and type-H vessels in steroid-induced osteonecrosis of the femoral head (SONFH) are unclear.
Methods: Human femoral heads were collected to detect the expression of ZEB1 and the levels of type-H vessels.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!