The experiments described in this paper and the following one establish the sequence of the 3'-OH terminal 159 nucleotides of turnip yellow mosaic virus RNA. Uniformly 32P-labeled turnip yellow mosaic virus RNA was partially digested with T1 ribonuclease and the fragments were fractionated by polyacrylamide gel electrophoresis. Fragments originating from the 3'-OH end of the RNA molecule were identified by testing for the 3'-terminal oligonucleotide, C-COH, after total U2 ribonuclease hydrolysis. Once identified, the 3'-OH terminal fragments were sequenced by the methods of Sanger et al. The first 51 nucleotides of the longest of the sequenced fragments (158 nucleotides) extends into the 3'-terminal part of the coat protein cistron. The coat protein cistron is followed by a stretch of 108 untranslated nucleotides whose function, though still unknown, is probably linked to the tRNA-like properties which have been attributed to the 3'-OH extremity of this viral RNA. Two possible secondary structures are proposed for the sequence and the implications of the findings with regard to the tRNA-like properties of the extremity are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1977.tb11269.xDOI Listing

Publication Analysis

Top Keywords

3'-oh extremity
8
3'-oh terminal
8
turnip yellow
8
yellow mosaic
8
mosaic virus
8
virus rna
8
coat protein
8
protein cistron
8
trna-like properties
8
3'-oh
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!