Within 3 hrs after administration of NAD into rats at a dose of 500 mg/kg of body mass more than a 3-fold increase in content of the nicotinamide in liver tissue, an increase in output of acid soluble material from DNA by 28%, 3-fold activation of the DNA reparative synthesis simultaneously with a decrease in NAD-pyrophosphorylase activity by 31% in liver tissue were detected during reparation of the DNA breaks induced after incubation with ethidium bromide under conditions of NAD excess in liver tissue. Distinct decrease in content of NAD as well as in activity of poly(ADP-ribose) polymerase was found in rat liver nuclei of both control and experimental animals during incubation of liver tissue with ethidium bromide. The rate of the DNA reparative synthesis was shown to correlate directly with the poly(ADP-ribose) polymerase activity and with the content of NAD in liver tissue.

Download full-text PDF

Source

Publication Analysis

Top Keywords

liver tissue
20
dna breaks
8
rat liver
8
dna reparative
8
reparative synthesis
8
ethidium bromide
8
content nad
8
polyadp-ribose polymerase
8
liver
7
dna
5

Similar Publications

Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.

View Article and Find Full Text PDF

Advances in liver organoids: replicating hepatic complexity for toxicity assessment and disease modeling.

Stem Cell Res Ther

January 2025

Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China.

The lack of in vivo accurate human liver models hinders the investigation of liver-related diseases, injuries, and drug-related toxicity, posing challenges for both basic research and clinical applications. Traditional cellular and animal models, while widely used, have significant limitations in replicating the liver's complex responses to various stressors. Liver organoids derived from human pluripotent stem cells, adult stem cells primary cells, or tissues can mimic diverse liver cell types, major physiological functions, and architectural features.

View Article and Find Full Text PDF

Prophylactic and therapeutic effects of EsV3 on atherosclerotic lesions in ApoE mice.

BMC Cardiovasc Disord

January 2025

Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Background: Atherosclerosis (AS) is a major contributor to vascular disorders and represents a significant risk to human health. Currently, first-line pharmacotherapies are associated with substantial side effects, and the development of atherosclerosis is closely linked to dietary factors. This study evaluated the effects of a dietary supplement, EsV3, on AS in apolipoprotein E (ApoE) model mice.

View Article and Find Full Text PDF

Cutaneous Anthrax: What is the Hallmark?

Acta Med Indones

October 2024

Division of Tropical and Infection Diseases, Department of Internal Medicine, Medical Faculty of Universitas Sebelas Maret - Moewardi Hospital, Surakarta, Indonesia.

A 71-year-old man complained of a blackish wound under his left eye, which began with fever and reddish spots after helping to slaughter a cow and cut its meat. The fever occured especially in the afternoon to evening, and is not accompanied by chills and sweating. On day 4 of fever onset, the fever diminished and the spots progressively widened with swelling.

View Article and Find Full Text PDF

Hypothalamic neural circuits regulating energy expenditure.

Vitam Horm

January 2025

Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States. Electronic address:

The hypothalamus plays a central role in regulating energy expenditure and maintaining energy homeostasis, crucial for an organism's survival. Located in the ventral diencephalon, it is a dynamic and adaptable brain region capable of rapid responses to environmental changes, exhibiting high anatomical and cellular plasticity and integrates a myriad of sensory information, internal physiological cues, and humoral factors to accurately interpret the nutritional state and adjust food intake, thermogenesis, and energy homeostasis. Key hypothalamic nuclei contain distinct neuron populations that respond to hormonal, nutrient, and neural inputs and communicate extensively with peripheral organs like the gastrointestinal tract, liver, pancreas, and adipose tissues to regulate energy production, storage, mobilization, and utilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!