Divalent metal ions as modulators of rat liver microsomal cholesterol esterase.

Rev Esp Fisiol

Departamento de Fisiología, Facultad de Medicina y Odontología Universidad del País Vasco, Bilbao, Spain.

Published: June 1993

The regulatory properties of the divalent metal ions Mg2+, Ca2+ and Mn2+ on the activity and kinetic behaviour of rat liver microsomal cholesterol esterase were studied in vitro. Mg2+ and Ca2+ exhibited similar concentration and preincubation time-dependent increases in esterase activity, with maximal stimulation at a concentration of 2 mM. However, Mn2+ had no effect at this concentration but displayed a potent inhibitory effect at concentrations above 20 mM. Activation of cholesterol esterase by Mg2+ and Ca2+ was selective in relation to i) the changes that cations produced in the enzyme kinetic constants, and ii) the chelating agents that reversed the metal ion-induced activation. Hence, the maximum rate of cholesterol ester hydrolysis doubled in the presence of Mg2+ and activation was reversed by EDTA, whereas a significant decrease in the apparent Km for cholesterol oleate was found when Ca2+ was added and this effect was blocked by ATP and EGTA. Both cations were able to reactivate cholesterol ester hydrolase activity in metal-depleted microsomes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cholesterol esterase
12
mg2+ ca2+
12
divalent metal
8
metal ions
8
rat liver
8
liver microsomal
8
microsomal cholesterol
8
cholesterol ester
8
cholesterol
6
ions modulators
4

Similar Publications

In this study, water-soluble fraction (WSF), chelator-soluble fraction (CSF), and sodium carbonate-soluble fraction (NSF) were sequentially fractionated from pear pulp, of which physicochemical properties and hypolipidemic activities in vitro were evaluated. They showed distinct monosaccharide composition, surface morphology, nuclear magnetic resonance (NMR), and Fourier transform infrared (FT-IR) spectrums. WSF and NSF were identified as high methyl-esterified pectic polysaccharides with degrees of methyl esterification (DM) of 85.

View Article and Find Full Text PDF

Practical Recommendations for the Diagnosis and Management of Lysosomal Acid Lipase Deficiency with a Focus on Wolman Disease.

Nutrients

December 2024

Pediatric Hepatology and Liver Transplant Unit, Department of Pediatrics, ERN Rare Liver ERN TransplantChild, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.

Lysosomal acid lipase deficiency (LAL-D) is an ultra-rare lysosomal storage disease with two distinct phenotypes, an infantile-onset form (formerly Wolman disease) and a later-onset form (formerly cholesteryl ester storage disease). The objective of this narrative review is to examine the most important aspects of the diagnosis and treatment of LAL-D and to provide practical expert recommendations. The infantile-onset form occurs in the first weeks of life and is characterized by malnourishment and failure to thrive due to gastrointestinal impairment (vomiting, diarrhea, malabsorption), as well as systemic inflammation, hepatosplenomegaly, and adrenal calcifications.

View Article and Find Full Text PDF

Transcriptional regulation of adipocyte lipolysis by IRF2BP2.

Sci Adv

January 2025

Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Article Synopsis
  • Adipocyte lipolysis plays a crucial role in regulating overall energy levels and metabolic balance, primarily controlled by specific enzymes and their modifications.
  • The study identifies IRF2BP2 as a transcriptional repressor that, when deleted, boosts lipolysis in human adipocytes without altering glucose uptake, while its overexpression has the opposite effect.
  • The research further reveals that the deletion of IRF2BP2 in mice leads to increased lipolysis and inflammation in adipose tissue, suggesting potential strategies for targeting lipolysis in metabolic disease treatments.
View Article and Find Full Text PDF

Assessment of a Light-Curable Hydrogel to Be Used for Root Canal Obturation.

J Dent Res

December 2024

Dentistry, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK.

Root canal obturation involves filling of the chemomechanically prepared root canal space. Despite reduced microbial load, residual bacteria can still lead to reinfection and treatment failure. Currently, obturation techniques use a combination of gutta-percha and sealer, which requires the preparation of the root canal to specific sizes and tapers to enable the fitting of customized cones.

View Article and Find Full Text PDF

Fermented milk (FM) is well-known to confer health-promoting benefits, particularly for managing chronic metabolic diseases. However, the specific cholesterol esterase (CE) inhibitory activities of FM produced from different animal milk sources have not been extensively explored. This study for the first time investigates the CE inhibition potential of FM derived from bovine (F_BM), camel (F_CM), sheep (F_SM), and goat milk (F_GM), each fermented with five different probiotic strains and stored for 14 days under refrigeration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!