HLA oligogenotyping has been used successfully to characterize most phenotypically undetectable variants of class II genes. Limitations inherent to the class I system have, however, complicated the application of this and other molecular approaches to HLA class I typing. We have previously shown that HLA class II polymorphism can be analyzed by a SBT approach. Here we present a class I-SBT strategy that provides complete sequence information for the two most polymorphic exons of the HLA-A, -B, and -C alleles. HLA class I SBT is based on direct sequencing of PCR-amplified HLA-A, -B, and -C cDNAs and requires a total of six cDNA -PCR-sequencing reactions (two per locus) and 13 different oligonucleotides. Each combination of oligonucleotides per reaction results in locus-specific sequence ladders and allows identification of both alleles in heterozygotes. Application of HLA-A, HLA-B, and HLA-C SBT to 26 homozygous and 32 serologically heterozygous samples has resulted in the identification of 24 novel class I nucleotide sequences encoding 17 new major histocompatibility complex class I products. An unexpected high degree of heterogeneity was found at the HLA-C locus with 14 novel sequences. Although there was a good correlation between the serologic phenotypes and SBT results, HLA-C SBT of most HLA-C serologically homozygous samples (heterozygous for HLA-A and/or -B) revealed heterozygozity (six of eight). SBT, the first molecular typing approach that has been generalized to both class I and class II genes, may be of special interest in applications demanding high sensitivity and specificity, such as in paternity testing or in the evaluation of the effects of sequence allelism in the outcome of unrelated bone marrow transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0198-8859(93)90141-mDOI Listing

Publication Analysis

Top Keywords

hla class
16
class
10
typing hla
8
class genes
8
hla-c sbt
8
sbt hla-c
8
sbt
6
hla
5
class sequence-based
4
sequence-based typing
4

Similar Publications

Anaplastic lymphoma kinase (ALK)-fusion proteins resulting from chromosomal rearrangements are promising targets for cancer immunotherapy. While ALK-specific CD8+ T cells and epitopes presented on MHC class I have been identified in patients with ALK-positive malignancies, little is known about ALK-specific CD4+ T cells. We screened peripheral blood of ten ALK-positive anaplastic large cell lymphoma (ALK+ALCL) patients in remission and six healthy donors for CD4+ T-cell responses to the whole ALK-fusion protein, nucleophosmin (NPM1)::ALK.

View Article and Find Full Text PDF

Antigen presentation plays a critical role in the pathogenesis of immune-mediated disorders. This study aimed to investigate the effects of IFN-γ and a cytokine mix (5MIX: IL-1α, IL-17A, IL-22, OsM, and TNF-α) on the antigen-presenting capabilities of keratinocytes, with a specific focus on immune-mediated dermatological conditions such as psoriasis (Ps). To achieve this, keratinocytes were treated with IFN-γ and 5MIX, and their impact on the expression of key antigen-presentation molecules, HLA-DRα and CD74, was assessed.

View Article and Find Full Text PDF

: Severe COVID-19 still constitutes an important health problem. Taking into account the crucial role of HLA in immune reactions, evaluation of the impact of HLA on COVID-19 risk and clinical course seemed necessary, as the already available data are inconsistent. The aim of the present study was to compare the HLA profiles of patients with symptomatic SARS-CoV-2 infection and a healthy control group, as well as to compare HLA allele frequencies in patients with severe and non-severe courses of COVID-19.

View Article and Find Full Text PDF

Human leukocyte antigen (HLA) mismatches in stem cell transplantation can be well-tolerated with the use of post-transplant cyclophosphamide (PTCy) for graft-versus-host-disease (GvHD) prophylaxis. Haploidentical (Haplo) and HLA-mismatched unrelated donors become acceptable donors. This review focuses on Haplo and unrelated donor selection in the context of PTCy-transplant for hematological malignancy, in comparison with conventional GvHD prophylaxis.

View Article and Find Full Text PDF

Major histocompatibility complex (MHC) class-I molecules (or Human Leucocyte Antigen class-I) play a key role in adaptive immunity against cancer. They present specific tumor neoantigens to cytotoxic T cells and provoke an antitumor cytotoxic response. The total or partial loss of HLA molecules can inhibit the immune system's ability to detect and destroy cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!