Convergence between cells which differ in both spatial and temporal properties create higher order neurons with response properties that are distinctly different from those of the input neurons. The spatial properties of target neurons are not necessarily "cosine-tuned". In addition, unlike the independence between spatial and temporal properties in cosine-tuned afferent neurons, higher-order target cells generally exhibit a dependence of temporal dynamics on spatial properties. The response properties of target neurons receiving spatio-temporal convergence (STC) from tonic and phasic-tonic or phasic afferents is investigated here by considering a general case where the dynamic input is represented by a fractional, leaky, derivative transfer function. It is shown that, at frequencies below the corner frequency of the dynamic input, the temporal properties of target neurons can be described by leaky differentiators having time constants that are a function of spatial direction. Thus, STC target neurons exhibit tonic temporal response properties during stimulation along some spatial directions (having small time constants) and phasic properties along other directions (having large time constants). Specifically, target neurons encode the complete derivative of the stimulus along certain spatial directions. Thus, STC acts as a directionally specific high-pass filter and produces complete derivatives from fractional, leaky derivative afferent signals. In addition, spatio-temporal transformations can generate novel temporal dynamics in the central nervous system. These observations suggest that spatio-temporal computations might constitute an alternative to parallel, independent spatial and temporal channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00226198 | DOI Listing |
J Tissue Eng
January 2025
Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
Growing evidence indicates that type 2 diabetes (T2D) is associated with an increased risk of developing Parkinson's disease (PD) through shared disease mechanisms. Studies show that insulin resistance, which is the driving pathophysiological mechanism of T2D plays a major role in neurodegeneration by impairing neuronal functionality, metabolism and survival. To investigate insulin resistance caused pathological changes in the human midbrain, which could predispose a healthy midbrain to PD development, we exposed iPSC-derived human midbrain organoids from healthy individuals to either high insulin concentration, promoting insulin resistance, or to more physiological insulin concentration restoring insulin signalling function.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States.
The Kv3.2 subfamily of voltage activated potassium channels encoded by the gene is abundantly expressed in neurons that fire trains of fast action potentials that are a major source of cortical inhibition. Gain-of-function (GOF) pathogenic variants in and , encoding Kv3.
View Article and Find Full Text PDFBrain Behav Immun Health
December 2024
James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic. After the success of therapeutics and worldwide vaccination, the long-term sequelae of SARS-CoV-2 infections are yet to be determined. Common symptoms of COVID-19 include the loss of taste and smell, suggesting SARS-CoV-2 infection has a potentially detrimental effect on neurons within the olfactory/taste pathways, with direct access to the central nervous system (CNS).
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
Malformations of cortical development encompass a broad range of disorders associated with abnormalities in corticogenesis. Widespread abnormalities in neuronal formation or migration can lead to small head size or microcephaly with disorganized placement of cell types. Specific, localized malformations are termed focal cortical dysplasias (FCD).
View Article and Find Full Text PDFAnalyst
January 2025
Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Taijiang District, Fuzhou 350005, China.
Methods based on enzyme labelling strategies have been widely developed for capacitance immunoassays, but most suffer from low sensitivity and are unfavorable for routine use in the early stages of diagnostics. Herein, we designed a highly efficient capacitance immunosensing method for the low-abundance neuroblastoma biomarker neuron-specific enolase (NSE) using an interdigitated micro-comb electrode. Initially, monoclonal mouse anti-human NSE capture antibodies were immobilized on the interdigitated gold electrodes using bovine serum albumin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!