It was reported previously that mexiletine undergoes stereoselective disposition in humans and that formation of three of its major metabolites co-segregates with polymorphic debrisoquin 4-hydroxylase (CYP2D6) activity. In this study, the hypothesis was tested that the CYP2D6-mediated oxidation pathways of mexiletine are responsible for the stereoselective disposition of the racemate in humans. Fourteen healthy subjects (10 extensive metabolizers [EMs] and 4 poor metabolizers [PMs]) participated in this study. They received a single 200-mg oral dose of racemic mexiletine hydrochloride on two occasions: once alone and once during administration of low-dose quinidine (50 mg four times a day). Blood and urine samples were obtained over 48 hr after the administration of mexiletine and analyzed by a stereoselective high-performance liquid chromatography assay. As reported previously, RS-mexiletine disposition was altered by a genetically determined (PM) or drug-induced (quinidine) decrease in CYP2D6 activity. In contrast, R/S ratio of the apparent total and nonrenal clearances of mexiletine and the R/S ratio of the urinary recovery of both enantiomers were similar in EMs and PMs. Moreover, these ratios were unaltered by quinidine administration. Partial metabolic clearance of N-hydroxymexiletine glucuronide, a non-CYP2D6 dependent metabolite, was highly stereoselective; the R/S ratio was 11.3 +/- 3.4. This ratio was similar in subjects with either an EM or a PM phenotype and was not altered by quinidine administration. Thus, the results obtained in this study suggest that non-CYP2D6-dependent metabolic pathways are responsible for the stereoselective disposition of mexiletine in humans.
Download full-text PDF |
Source |
---|
Chemistry
May 2024
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW.
Owing to its high natural abundance compared to the commonly used transition (precious) metals, as well as its high Lewis acidity and ability to change oxidation state, aluminium has recently been explored as the basis for a range of single-site catalysts. This paper aims to establish the ground rules for the development of a new type of cationic alkene oligomerisation catalyst containing two Al(III) ions, with the potential to act co-operatively in stereoselective assembly. Five new dimers of the type [RAl(2-py')] (R=Me, Bu; py'=substituted pyridyl group) with different substituents on the Al atoms and pyridyl rings have been synthesised.
View Article and Find Full Text PDFDrug Metab Dispos
April 2024
Department of Anesthesiology, Duke University, Durham, North Carolina (E.D.K.); Bermaride, LLC (E.D.K.); and Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri (E.J.L.).
Bupropion is used for treating depression, obesity, and seasonal affective disorder, and for smoking cessation. Bupropion is commonly prescribed, but has complex pharmacokinetics and interindividual variability in metabolism and bioactivation may influence therapeutic response, tolerability, and safety. Bupropion is extensively and stereoselectively metabolized, the metabolites are pharmacologically active, and allelic variation in cytochrome P450 (CYP) 2B6 affects clinical hydroxylation of single-dose bupropion.
View Article and Find Full Text PDFInorg Chem
May 2023
CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain.
Stereoselective total synthesis of several analogues of piscibactin (Pcb), the siderophore produced by different pathogenic Gram-negative bacteria, was performed. The acid-sensitive αmethylthiazoline moiety was replaced by a more stable thiazole ring, differing in the configuration of the OH group at the C-13 position. The ability of these Pcb analogues to form complexes with Ga as a mimic of Fe showed that the configuration of the hydroxyl group at C-13 as 13 is crucial for the chelation of Ga to preserve the metal coordination, while the presence of a thiazole ring instead of the αmethylthiazoline moiety does not affect such coordination.
View Article and Find Full Text PDFDrug Metab Dispos
September 2023
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea (W.L., M-S.K., J.K.); Laboratory of Quantitative System Pharmacokinetics/Pharmacodynamics, Josai International University, Tokyo, Japan (Y.A., Y.S.); and Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (Y.A.).
Warfarin is well recognized for its high-affinity and capacity-limited binding to the pharmacological target and undergoes target-mediated drug disposition. Here, we developed a physiologically based pharmacokinetic (PBPK) model that incorporated saturable target binding and other reported hepatic disposition components of warfarin. The PBPK model parameters were optimized by fitting to the reported blood pharmacokinetic (PK) profiles of warfarin with no stereoisomeric separation after oral dosing of racemic warfarin (0.
View Article and Find Full Text PDFEur J Drug Metab Pharmacokinet
March 2023
Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine Research II, 950 West Walnut Street, Indianapolis, IN, 46202, USA.
Background And Objectives: Bupropion is an atypical antidepressant and smoking cessation aid; its use is associated with wide intersubject variability in efficacy and safety. Knowledge of the brain pharmacokinetics of bupropion and its pharmacologically active metabolites is considered important for understanding the cause-effect relationships driving this variability.
Methods: Brain concentrations from rats administered a 10 mg/kg subcutaneous dose of racemic bupropion were analyzed using a stereoselective LC/MS-MS method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!