Calponin is a smooth muscle specific, actin-, tropomyosin- and calmodulin-binding protein thought to be involved in some way in the regulation or modulation of contraction. Here we describe the cloning and bacterial expression of two calponin species from murine and porcine smooth muscle tissues. Primary and secondary structural analyses of the deduced amino acid sequences revealed a high degree of homology to avian calponin with the exception of a short and variable C-terminal segment. The sequence data demonstrate that the two mammalian calponin variants do not arise via alternative splicing but are encoded by different genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(93)80909-eDOI Listing

Publication Analysis

Top Keywords

mammalian calponin
8
smooth muscle
8
calponin identification
4
identification expression
4
expression genetic
4
genetic variants
4
calponin
4
variants calponin
4
calponin smooth
4
muscle specific
4

Similar Publications

TBC1D20 coordinates vesicle transport and actin remodeling to regulate ciliogenesis.

J Cell Biol

April 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.

TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.

View Article and Find Full Text PDF

Objective: To explore the function of LIM and calponin homology domains 1 (LIMCH1) in the development and progression of oral squamous cell carcinoma (OSCC), along with their potential clinical applications.

Methods: By utilizing transcriptome sequencing data from two groups of oral squamous cell carcinoma patients, along with bioinformatics analytical techniques such as Gene Ontology (GO) and gene co-expression networks, we identified genes that might play a pivotal role in the pathogenesis of oral squamous cell carcinoma. We employed real-time quantitative PCR and Western blotting to validate the expression patterns of these genes across twelve patient tissue samples.

View Article and Find Full Text PDF

An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains largely unknown. This study investigated the functional significance of CNN3 in myogenic differentiation, along with its effects on actin remodeling and mechanosensitive signaling in C2C12 myoblasts.

View Article and Find Full Text PDF

The current mortality rates for breast cancer underscore the need for better prognostic tools; moreover, LIM and calponin homology domain 1 (LIMCH1), which is a protein with dual roles in cancer, is a promising candidate for investigation. This study employed an integrative approach combining bioinformatics analysis of The Cancer Genome Atlas (TCGA) cohort and clinical immunohistochemistry (IHC) cohort data. We analysed LIMCH1 expression patterns, its associations with clinicopathological features and prognosis, and its impact on the tumour immune microenvironment (TIME).

View Article and Find Full Text PDF

A xenogenic-free culture medium for cell micro-patterning systems as cell-instructive biomaterials for potential clinical applications.

Biomed Mater

January 2025

G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany.

Cell micro-patterning controls cell fate and function and has potential for generating therapeutically usable mesenchymal stromal cell (MSC) populations with precise functions. However, to date, the micro-patterning of human cells in a translational context has been impossible because only ruminant media supplements, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!