Kinetic study of the reaction of acetoacetate with glycine and sodium nitroprusside.

Anal Chem

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907.

Published: July 1993

This paper describes an extensive kinetic study of the reactions involved in the determination of acetoacetate in body fluids. It is concluded that acetoacetate reacts with glycine to produce an imine intermediate that tautomerizes to an enamine. It is also concluded that nitroprusside reacts with the imine intermediate to produce an unstable product with an absorption maximum near 540 nm. This product decays slowly to produce a stable product with an absorption maximum near 393 nm. A proposed reaction pathway is used to develop kinetic equations, rate constants, equilibrium constants, and molar absorptivity of the unstable product that permit quantitative prediction of the kinetic behavior for a wide range of reactant concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac00062a016DOI Listing

Publication Analysis

Top Keywords

kinetic study
8
imine intermediate
8
unstable product
8
product absorption
8
absorption maximum
8
kinetic
4
study reaction
4
reaction acetoacetate
4
acetoacetate glycine
4
glycine sodium
4

Similar Publications

Measuring lower extremity impact acceleration is a common strategy to identify runners with increased injury risk. However, existing axial peak tibial acceleration (PTA) thresholds for determining high-impact runners typically rely on small samples or fixed running speeds. This study aimed to describe the distribution of axial PTA among runners at their preferred running speed, determine an appropriate adjustment for investigating impact magnitude at different speeds, and compare biomechanics between runners classified by impact magnitude.

View Article and Find Full Text PDF

Do SGLT2 Inhibitors Protect the Kidneys? An Alternative Explanation.

Endocr Metab Immune Disord Drug Targets

January 2025

Sheba Medical Center, Institute of Endocrinology, Tel-Hashomer, Israel.

SGLT2 inhibitors are a family of drugs that were developed to treat diabetes mellitus. In randomized controlled trials, SGLT2 inhibitors seem to prevent kidney deterioration in patients with nephropathies, both diabetic and non-diabetic. However, in contrast to biochemical/physiological results (proteinuria and serum creatinine levels) that improve in all studies, the clinical results (all-cause mortality, cardiovascular death, need for dialysis, or renal transplant) do not consistently improve.

View Article and Find Full Text PDF

In this study, we developed palladium-catalyzed dehydrogenative cyclization to transform 1-(2-aminoaryl)-3-arylpropan-1-ones into 2-arylquinolin-4(1)-ones, also known as aza-flavones which are the bioisosteres of flavones, in an atom-economic manner. This method exhibited excellent chemical compatibility with a broad substrate scope, accommodating up to 25 derivatives. Additionally, kinetic studies were performed to elucidate the reaction mechanism.

View Article and Find Full Text PDF

In biological systems, heme-copper oxidase (HCO) enzymes play a crucial role in the oxygen reduction reaction (ORR), where the pivotal O-O bond cleavage of the (heme)Fe-peroxo-Cu intermediate is facilitated by active-site (peroxo core) hydrogen bonding followed by proton-coupled electron transfer (PCET) from a nearby (phenolic) tyrosine residue. A useful approach to comprehend the fundamental relationships among H-bonding/proton/H-atom donors and their abilities to induce O-O bond homolysis involves the investigation of synthetic, bioinspired model systems where the exogenous substrate properties (such as p and bond dissociation energy (BDE)) can be systematically altered. This report details the reactivity of a heme-peroxo-copper HCO model complex (LS-4DCHIm) toward a series of substituted catechol substrates that span a range of p and O-H bond BDE values, exhibiting different reaction mechanisms.

View Article and Find Full Text PDF

Effective removal of rhodamine B dyestuff using colemanite as an adsorbent: Isotherm, kinetic, thermodynamic analysis and mechanism.

Heliyon

January 2025

Alanya Alaaddin Keykubat University, Rafet Kayis Engineering Faculty, Department of Engineering Basic Science, 07450, Alanya, Antalya, Turkiye.

Removal of Rhodamine B (RhB) from aqueous solutions was performed by the batch adsorption process. Colemanite was characterized as an adsorbent by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF). The effects of contact time, the effect of the initial concentration of the dye, the amount of adsorbent and temperature parameters on the removal of RhB were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!