In order to determine whether growth hormone (GH) exerts a direct effect on osteoblasts, in vitro and in vivo immunocytological studies were carried out on newborn rat calvaria and a clonal osteoblast-like cell line (MC3T3-E1) isolated from newborn mouse calvaria. After exposure to human growth hormone (hGH) or 1,25 dihydroxyvitamin D3 (1,25(OH)2D3), a significant increase in alkaline phosphatase activity was observed in MC3T3-E1 cells. Simultaneous exposure of MC3T3-E1 cells to hGH and 10 nM 1,25(OH)2D3 showed a synergistic effect of the two hormones on this activity. The optimal dose of hGH was 0.1 nM. An immunocytological procedure was performed on ultrathin frozen sections from 7-day-old rat calvaria and MC3T3-E1 cells cultured with hGH. GH-like immunoreactivity was observed in both cases. In calvaria, endogenous GH-like immunoreactivity was localized at the same ultrastructural level (plasma membrane, cytoplasmic and nuclear matrices) as exogenous GH-like immunoreactivity in MC3T3-E1 cells. Following the initial step of binding to the plasma membrane, GH may be internalized in the cytoplasmic matrix and nucleus. In situ hybridization revealed the presence of mRNA coding for GH receptor in calvaria cells. The density of these receptors seemed to be lower in osteoblasts than in hepatocytes. In MC3T3-E1 cells, hGH induced a dose-dependent secretion of insulin-like growth factor 1. In conclusion, these results indicate that GH may act directly on osteoblasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00312829 | DOI Listing |
BMC Oral Health
January 2025
Department of Orthodontics, Stomatology School of Jilin University, No. 1500 Qinghua Road, ChaoYang Area, Changchun City, Jilin Province, P.R. China.
Objective: To investigating whether osteogenic differentiation of osteoblasts promoted by tension force (TF) is mediated by ephrinB2-EphB4 signaling.
Methods: TF was applied to MC3T3-E1 cells, then CCK-8 and live/dead staining were used to detect cell proliferation. Levels of osteogenic differentiation-related factors were detected by ALP staining, ARS staining, qPCR and western blot.
Biomater Adv
January 2025
Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany. Electronic address:
Biophysical stimuli such as alternating electrical fields can mimic endogenous electrical potentials and currents in natural bone. This can help to improve the healing and reconstruction of bone tissue. However, little is known about the combined influence of biomaterials and alternating electric fields on bone cells.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Joint 1, Xi'An International Medical Center Hospital, No.777, Xitai Road, Gaoxin District, Xi'An, 710000, China.
Background: Fractures are the prevalent traumatic conditions encountered in orthopedic practices. The rising incidence of fractures has emerged as a pressing global health concern. Although the majority of individuals with fractures experience complete recovery of bone structure and function, approximately 10% of those with fractures exhibit delayed fracture healing (DFH).
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Marquette University School of Dentistry, Milwaukee, Wisconsin, USA.
In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!