X-linked ichthyosis results from steroid sulfatase (STS) deficiency; 90% of affected patients have a complete deletion of the entire 146 kb STS gene on the distal X chromosome short arm (Xp22.3). In these families prenatal diagnosis and carrier testing can be completed in 2 days by hybridizing simultaneously 2 different cosmid probes labeled with fluorescein or Texas red and counterstaining interphase nuclear DNA with DAPI. An STS gene probe labeled with Texas red hybridizes specifically to the steroid sulfatase gene on the X chromosome. A second flanking probe labeled with fluorescein hybridizes to both the normal Y chromosome and normal and STS deleted X chromosomes. In this fashion the interphase nuclei of normal males, affected males, normal females, and carrier females can be distinguished unambiguously. Because normal males and carrier females each show two yellow-green fluorescein spots and one Texas red STS spot, use of this test prenatally requires determining fetal sex independently with repetitive X and Y chromosome-specific probes. This procedure can be used with lymphocytes, direct and cultured chorionic villus cells, direct and cultured amniocytes, and fibroblasts. Similar methods are anticipated to be useful for rapid diagnostic assessment of other aneuploid gene disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.1320460610 | DOI Listing |
Biochim Biophys Acta Mol Cell Res
January 2025
College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea. Electronic address:
X-linked ichthyosis (XLI) is a genetic disorder characterized by a steroid sulfatase (STS) deficiency inducing excessive cholesterol sulfate accumulation and keratinization. Our study utilizes STS knockout mice to reproduce the hyperkeratinization typical of XLI, providing a valuable model for investigating the underlying mechanisms. From the experiment of STS-deficient keratinocytes using the CRISPR/Cas9 system, we observed upregulation of E-cadherin, which is associated with keratinocyte differentiation and stratification.
View Article and Find Full Text PDFGen Comp Endocrinol
January 2025
Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
Cytochrome P450 17A1 (CYP17A1) catalyzes two enzymatic reactions in the biosynthesis of dehydroepiandrosterone (DHEA) from pregnenolone. In pregnant humans, the adrenal gland is responsible for DHEA biosynthesis, which is then sulfated by SULT2A1 and released into the bloodstream. This sulfated DHEA is subsequently taken up by the placenta and deconjugated to serve as a precursor for estrogen biosynthesis.
View Article and Find Full Text PDFAnticancer Res
January 2025
Faculty of Pharmacy, Iryo Sosei University, Fukushima, Japan.
Background/aim: Breast cancer is mostly affected by estrogen, which promotes proliferation, tumorigenesis, and cancer progression. Estrogen sulfotransferase (SULT1E1) catalyzes sulfation to inactivate estrogens, whereas steroid sulfatase (STS) catalyzes estrogen sulfate hydrolysis to activate estrogens in breast cancer cells. Three major organosulfur compounds in garlic (Allium sativum L.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic.
The diagnostic prevalence of autism spectrum disorders (ASD) shows boys to be more affected than girls. Due to this reason, there is a lack of research including and observing ASD girls. Present study was aimed to detect hormones of steroidogenesis pathway in prepubertal girls (n = 16) diagnosed with ASD and sex and age matched neurotypical controls (CTRL, n = 16).
View Article and Find Full Text PDFSteroids
January 2025
Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!