AI Article Synopsis

Article Abstract

Mammalian pancreatic ribonucleases form a family of homologous proteins that has been extensively investigated. The primary structures of these enzymes were used to derive phylogenetic trees. These analyses indicate that the presence of three strictly homologous enzymes in the bovine species (the pancreatic, seminal, and cerebral ribonucleases) is due to gene duplication events which occurred during the evolution of ancestral ruminants. In this paper we present evidence that confirms this finding and that suggests an overall structural conservation of the putative ribonuclease genes in ruminant species. We could also demonstrate that the sequences related to ox ribonuclease coding regions present in genomic DNA of the giraffe species are the orthologues of the bovine genes encoding the three ribonucleases mentioned above.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00170459DOI Listing

Publication Analysis

Top Keywords

ribonuclease coding
8
genomic dna
8
sequences pancreatic
4
pancreatic ribonuclease
4
coding region
4
region genomic
4
dna mammalian
4
species
4
mammalian species
4
species mammalian
4

Similar Publications

Previous RNA profiling studies revealed co-expression of overlapping sense/antisense (s/a) transcripts in pro- and eukaryotic organisms. Functional analyses in yeast have shown that certain s/a mRNA/mRNA and mRNA/lncRNA pairs form stable double-stranded RNAs (dsRNAs) that affect transcript stability. Little is known, however, about the genome-wide prevalence of dsRNA formation and its potential functional implications during growth and development in diploid budding yeast.

View Article and Find Full Text PDF

The budding yeast Xrn1 protein shuttles between the nucleus, where it stimulates transcription, and the cytoplasm, where it executes the major cytoplasmic mRNA decay. In the cytoplasm, apart from catalyzing 5'→3' decay onto non translated mRNAs, Xrn1 can follow the last translating ribosome to degrade the decapped mRNA template, a process known as "cotranslational mRNA decay". We have previously observed that the import of Xrn1 to the nucleus is required for efficient cytoplasmic mRNA decay.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.

View Article and Find Full Text PDF

Zymocin-like killer toxin gene clusters in the nuclear genomes of filamentous fungi.

Fungal Genet Biol

January 2025

Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland. Electronic address:

Zymocin-like killer toxins are anticodon nucleases secreted by some budding yeast species, which kill competitor yeasts by cleaving tRNA molecules. They are encoded by virus-like elements (VLEs), cytosolic linear DNA molecules that are also called killer plasmids. To date, toxins of this type have been found only in budding yeast species (Saccharomycotina).

View Article and Find Full Text PDF
Article Synopsis
  • A novel biosensing platform has been developed using polystyrene microsphere coding and Argonaute (CbAgo) for highly sensitive detection of multiple targets in public health.
  • The system employs micropore resistance counting and allows for precise decoding through DNA activation, enabling recognition and cleavage of target sequences.
  • This platform shows exceptional sensitivity in detecting mycotoxins and inflammatory markers, highlighting its potential use in clinical diagnostics, food safety, and environmental monitoring.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!