To compare features of the receptor-binding sites (RBSs) of different influenza virus hemagglutinins (HA), binding of a number of synthetic sialic acid (SA) analogs and natural sialosides by a panel of about 30 human influenza A and B virus strains was studied in a competitive ligand binding assay. For all the viruses tested, the N-acetyl group of Neu5Ac, as well as the natural orientation of the carboxylic group at C2 and the hydroxylic group at C4, was essential for binding. Significant type- and subtype-specific differences were observed in virus recognition of asialic parts of sialosides. H1 strains, unlike H3 and type B viruses, were found to bind alpha 2-6-sialyl-N-acetyllactosamine with about an order of magnitude higher affinity than alpha 2-6-sialyllactose (6'SL). The H1 viruses and the H3 strains with Gln in position 226 of HA, but not the H3 strains with Leu-226, bound 6'SL with a lower affinity than alpha 2-3-sialyllactose; this effect correlated clearly with the preferential binding by the former viruses of unsubstituted alpha Neu5Ac compared to methyl alpha-glycoside of Neu5Ac. Thus, differentiation between the types of the SA-Gal linkage by the A viruses appeared to depend, at least partially, upon the recognition by the HA of the first hydrocarbon group of the aglycon. Type B virus strains were distinct in having a lower affinity for the Neu5Ac moiety and in providing a higher contribution of the asialic portions of sialosides to the HA-ligand interactions. The last effects are presumably due to the amino acid insertions in the type B HA surrounding the RBS, which makes the receptor-binding pocket deeper. The results obtained in the present investigation indicate that while the functional groups of Neu5Ac studied are recognized by the RBSs of all influenza viruses, the magnitude of their contribution to the binding energy, as well as the contribution of the asialic portion of the receptor, may vary in dependence upon the virus type, subtype, and strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/viro.1993.1459 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322.
Viral infections are characterized by dispersal from an initial site to secondary locations within the host. How the resultant spatial heterogeneity shapes within-host genetic diversity and viral evolutionary pathways is poorly understood. Here, we show that virus dispersal within and between the nasal cavity and trachea maintains diversity and is therefore conducive to adaptive evolution, whereas dispersal to the lungs gives rise to population heterogeneity.
View Article and Find Full Text PDFFront Immunol
January 2025
College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
Introduction: Animal influenza viruses pose a danger to the general public. Eurasian avian-like H1N1 (EA H1N1) viruses have recently infected humans in several different countries and are often found in pigs in China, indicating that they have the potential to cause a pandemic. Therefore, there is an urgent need to develop a potent vaccine against EA H1N1.
View Article and Find Full Text PDFFront Pediatr
January 2025
Cluster for Health Services Research, Norwegian Institute of Public Health, Oslo, Norway.
Aim: Healthcare services are in need of tools that can help to ensure a sufficient capacity in periods with high prevalence of respiratory tract infections (RTIs). During the COVID-19 pandemic, we forecasted the number of hospital admissions for RTIs among children aged 0-5 years. Now, in 2024, we aim to examine the accuracy and usefulness of our forecast models.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
Influenza-related acute lung injury is a life-threatening condition primarily caused by uncontrolled replication of the influenza virus and intense proinflammatory responses. Cereblon (CRBN) is a protein known for its role in the ubiquitin-proteasome system and as a target of the drug thalidomide. However, the function of CRBN in influenza virus infection remains poorly understood.
View Article and Find Full Text PDFJ Immunol Methods
January 2025
Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg 194064, Russia; Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; Institute of Experimental Medicine, 12 Ulitsa Akademika Pavlova, St. Petersburg 197376, Russia.
Background: Rapid vaccine platforms development is crucial for responding to epidemics and pandemics of emerging infectious diseases, such as Ebola. This study explores the potential of peptide vaccines that self-organize into amyloid-like fibrils, aiming to enhance immunogenicity while considering safety and cross-reactivity.
Methods: We synthesized two peptides, G33 and G31, corresponding to a segment of the Ebola virus GP2 protein, with G33 known to form amyloid-like fibrils.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!