A genetically engineered water-soluble derivative of PBP2x of Streptococcus pneumoniae has been produced, purified and crystallized in a form suitable for X-ray diffraction analysis. The best crystals have been grown at 15 degrees C, from solutions containing 8% polyethylene glycol 10,000 at pH values ranging from 3.9 to 6.0. These crystals diffract to a resolution of 3.5 A and have a space group P6(1)22 (or enantiomorph) with unit cell dimensions of a = b = 162.2 A, c = 171.8 A, alpha = beta = 90 degrees, gamma = 120 degrees. The molecular mass and cell dimensions suggest that there is one molecule of enzyme per asymmetric unit. The breakdown of a chromogenic cephalosporin derivative diffused into a crystal reveals clearly that the enzyme is active in the crystalline state.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.1993.1452DOI Listing

Publication Analysis

Top Keywords

genetically engineered
8
engineered water-soluble
8
molecular mass
8
pbp2x streptococcus
8
streptococcus pneumoniae
8
cell dimensions
8
crystallization genetically
4
water-soluble primary
4
primary penicillin
4
penicillin target
4

Similar Publications

Treatment of pediatric drug-resistant generalized epilepsy with responsive neurostimulation of the centromedian nucleus of the thalamus: A case series of seven patients.

Epilepsy Res

January 2025

Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 8th Floor Faculty Pavilion, 4401 Penn Ave., Pittsburgh, PA 15224, United States. Electronic address:

Purpose: Responsive neurostimulation of the centromedian nucleus of the thalamus (CM RNS) is being investigated for treatment of drug-resistant generalized epilepsy with promising results. The aim of this study is to report outcomes of seven patients with pediatric-onset drug-resistant generalized epilepsy, including both genetic generalized epilepsy (GGE) and Lennox-Gastaut syndrome (LGS), who underwent treatment with bilateral CM RNS.

Methods: A retrospective chart review was performed for patients with drug-resistant generalized epilepsy who underwent treatment with bilateral CM RNS at Children's Hospital of Pittsburgh from 2020 to 2022.

View Article and Find Full Text PDF

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Differentiation of stem cells into chondrocytes and their potential clinical application in cartilage regeneration.

Histochem Cell Biol

January 2025

Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.

Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA).

View Article and Find Full Text PDF

Black carp (Mylopharyngodon piceus) is one of the "four famous domestic fishes" in China and an important economic fish in freshwater aquaculture. A high-quality genome is essential for advancing future biological research and breeding programs for this species. In this study, we aimed to generate a high-quality chromosome-level genome assembly of black carp using Nanopore and Hi-C technologies.

View Article and Find Full Text PDF

Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!