Temporal lobe lesions have been found to impair the acquisition of classical conditional discrimination learning in an eyelid conditioning paradigm, with sparing of simple eyelid conditioning. In the present study, subjects with left or right temporal resections were compared with normal controls on two operant conditioning tasks using a conditional and a simple discrimination paradigm analogous to the previously reported classical conditioning tasks. Subjects with right temporal lesions, and to a lesser extent those with left temporal lesions, were impaired relative to frontal lobe and control subjects in the acquisition of a conditional discrimination within an operant conditioning setting. A subsequent experiment showed that both left and right temporal lobe subjects were unimpaired on a simple operant discrimination task. These findings are compatible with theory relating hippocampal function to the learning of if-then rules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0010-9452(13)80184-0DOI Listing

Publication Analysis

Top Keywords

operant conditioning
12
temporal lobe
12
left temporal
12
lobe lesions
8
conditional simple
8
simple discrimination
8
discrimination learning
8
conditional discrimination
8
eyelid conditioning
8
conditioning tasks
8

Similar Publications

Identifying factors that contribute to collision avoidance behaviours while walking in a natural environment.

Sci Rep

January 2025

Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.

Busy walking paths, like in a park, city centre, or shopping mall, frequently necessitate collision avoidance behaviour. Lab-based research has shown how different situation- and person-specific factors, typically studied independently, affect avoidance behaviour. What happens in the real world is unclear.

View Article and Find Full Text PDF

Background: The global aging population and rapid development of digital technology have made health management among older adults an urgent public health issue. The complexity of online health information often leads to psychological challenges, such as cyberchondria, exacerbating health information avoidance behaviors. These behaviors hinder effective health management; yet, little research examines their mechanisms or intervention strategies.

View Article and Find Full Text PDF

Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.

Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.

Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.

View Article and Find Full Text PDF

Successful resolution of approach-avoidance conflict (AAC) is fundamentally important for survival, and its dysregulation is a hallmark of many neuropsychiatric disorders, and yet the underlying neural circuit mechanisms are not well elucidated. Converging human and animal research has implicated the anterior/ventral hippocampus (vHPC) as a key node in arbitrating AAC in a region-specific manner. In this study, we sought to target the vHPC CA1 projection pathway to the nucleus accumbens (NAc) to delineate its contribution to AAC decision-making, particularly in the arbitration of learned reward and punishment signals, as well as innate signals.

View Article and Find Full Text PDF

Rats and mice rapidly update timed behaviors.

Anim Cogn

January 2025

Neuroscience Department, Oberlin College, 173 Lorain St, Oberlin, OH, USA.

Keeping track of time intervals is a crucial aspect of behavior and cognition. Many theoretical models of how the brain times behavior make predictions for steady-state performance of well-learned intervals, but the rate of learning intervals in these models varies greatly, ranging from one-shot learning to learning over thousands of trials. Here, we explored how quickly rats and mice adapt to changes in interval durations using a serial fixed-interval task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!