Under mildly destabilizing conditions (0.7 M GuHCl), phosphoglycerate kinase from yeast undergoes a reversible two-step equilibrium unfolding transition when the temperature is lowered from 30 to 1 degree C (Griko, Y. V., Venyaminov, S. Y., & Privalov, P. L. (1989) FEBS Lett. 244, 276-278). The kinetics of the changes in compactness and secondary structure have been studied by means of dynamic light scattering and far-UV circular dichroism, respectively. It turned out that unfolding and refolding after an appropriate temperature jump (T-jump) was performed proceeded in substantially different ways. After a T-jump from 30 to 1 degree C, a multiphasic unfolding behavior was observed, reflecting the independent unfolding of the N-terminal and C-terminal domains with time constants of about 7 and 45 min, respectively. A remarkable feature of the unfolding process is the simultaneous change of compactness and secondary structure. Refolding after a T-jump from 1 degree C to higher temperatures occurs in two stages. At the first stage an appreciable amount of secondary structure is formed rapidly within the dead time of the T-jump, while the overall dimensions of the polypeptide chain remain essentially unchanged. Thus, an extended folding intermediate is formed at an early stage of folding. Further information of secondary structure proceeds slowly within a time range of minutes in parallel with the increase of compactness. At 30 degrees C, both domains refold simultaneously, while at 15 degrees C, independent folding can be observed. These findings are discussed with respect to predictions of existing models of folding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00081a020 | DOI Listing |
Protein Sci
February 2025
Department of Physics, University of Washington, Seattle, Washington, USA.
Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.
View Article and Find Full Text PDFJ Esthet Restor Dent
January 2025
Department of Prosthodontics, Tufts University School of Dental Medicine, Boston, Massachusetts, USA.
Objective: Minimally invasive dentistry is being widely practiced. The center stone is to be as conservative as possible to minimize unnecessary removal of healthy tooth structure. In prosthodontics the patients have generalized and combined nature of diseases.
View Article and Find Full Text PDFActa Biomater
January 2025
Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom.
The quantitative characterization of the structure of biomineral surfaces is needed for guiding regenerative strategies. Current techniques are compromised by a requirement for extensive sample preparation, limited length-scales, or the inability to repeatedly measure the same surface over time and monitor structural changes. We aim to address these deficiencies by developing Calcium (Ca) K-edge Polarisation Induced Contrast X-ray Fluorescence (PIC-XRF) to quantify hydroxyapatite (HAp) crystallite structural arrangements in high and low textured surfaces.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Laboratório Bioquímica e Biofísica, Instituto Butantan, São Paulo, Av. Vital Brasil 1500, São Paulo, SP 05503-900, Brazil. Electronic address:
Although proteins in snake venoms have been extensively studied and characterized, low-mass molecules remain relatively unexplored, mainly due to their low abundance, secondary role in envenomation, and some analytical technique limitations. However, these small molecules can provide new important data related to venom toxins' molecular structure, functions, and evolutionary relationships. This research aimed to characterize molecules below 10 kDa in the venoms of snakes from the Viperidae families (Bothrops, Agkistrodon, and Bitis) and compare two chromatographic approaches: reverse-phase chromatography (RP), a classic technique, and hydrophilic interaction liquid chromatography (HILIC), an alternative technique, both coupled with high-resolution mass spectrometry (HRMS).
View Article and Find Full Text PDFNat Commun
January 2025
Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!