The acyl-CoA dehydrogenases (ACDs) are mitochondrial enzymes that dehydrogenate acyl-coenzyme A esters of different chain lengths. Inherited deficiencies of these dehydrogenases are commonly associated with muscle weakness and lipid storage. Numerous assays including spectrophotometric, fluorometric, chemical, and radiochemical procedures have been used, but there is need for a rapid, reproducible assay for the different acyl-CoA dehydrogenases in small frozen samples of human muscle biopsies. We describe a comparative study of dye-linked spectrophotometric assays of the long, medium, and short chain acyl-CoA dehydrogenases in frozen rat and human muscle samples. An optimal procedure is described confirming the value of glass-glass homogenization and assay of a 600g supernatant. Higher activities for all acyl-CoA dehydrogenases, citrate synthase, and cytochrome c oxidase were obtained in rat in contrast to human. The substrate-linked dye reduction method was found superior to the ferricenium or electron transfer flavoprotein acceptor systems. Application of the phenazine ethosulfate-DCPIP-linked method to medium-chain acyl-CoA dehydrogenase (MCAD) was studied in detail and the effect of immunoprecipitation of MCAD allowed for the determination of substrate specificity and the degree of crossover between long-, medium-, and short-chain ACD activity following immunoprecipitation. Finally, a comparison of the specificity and validity of the assay in a patient with MCAD deficiency was performed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/bmmb.1993.1036 | DOI Listing |
Environ Microbiol
December 2024
Institute for Environmental Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg-Essen, Essen, Germany.
The CoA thioester of 2-(carboxymethyl)cyclohexane-1-carboxylic acid has been identified as a metabolite in anaerobic naphthalene degradation by the sulfate-reducing culture N47. This study identified and characterised two acyl-CoA dehydrogenases (ThnO/ThnT) and an intramolecular CoA-transferase (ThnP) encoded within the substrate-induced thn operon, which contains genes for anaerobic degradation of naphthalene. ThnP is a CoA transferase belonging to the family I (Cat 1 subgroup) that catalyses the intramolecular CoA transfer from the carboxyl group of 2-(carboxymethyl)cyclohexane-1-carboxyl-CoA to its carboxymethyl moiety, forming 2-carboxycyclohexylacetyl-CoA.
View Article and Find Full Text PDFMethods Enzymol
November 2024
Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile. Electronic address:
The rising levels of atmospheric CO and its impact on climate change call for new methods to transform this greenhouse gas into beneficial compounds. Carboxylases have a significant role in the carbon cycle, converting gigatons of CO into biomass annually. One of the most effective and fastest carboxylases is crotonyl-CoA carboxylase/reductase (Ccr).
View Article and Find Full Text PDFNeuropharmacology
January 2025
Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou, 215006, China. Electronic address:
PLoS One
October 2024
Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America.
Aerobic organisms continuously generate internal superoxide and hydrogen peroxide, which can damage enzymes and impair growth. To avoid this problem cells maintain high levels of superoxide dismutases, catalases, and peroxidases. Surprisingly, we do not know the primary sources of these reactive oxygen species (ROS) in living cells.
View Article and Find Full Text PDFFoods
September 2024
Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Volatile fatty acid derivatives (VFADs) play a significant role in contributing to flowery-fruity flavor black tea. Innovative black tea is typically crafted from aroma-intensive tea cultivars, such as Jinmudan, using defined production methodologies. In this study, the during-processing tea leaves of innovative black tea were applied as materials, and we selected a total of 45 VFADs, comprising 11 derived aldehydes, nine derived alcohols, and 25 derived esters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!