Immobilization as a tool for the stabilization of lignin peroxidase produced by Phanerochaete chrysosporium INA-12.

Appl Biochem Biotechnol

Laboratoire de Chimie Biologique, I.N.R.A.-C.B.A.I., Institut National Agronomique, Centre de Grignon, Thiverval-Grignon, France.

Published: September 1993

Lignin peroxidase immobilization was achieved by covalent coupling on CNBr-Sepharose 4B. Protein immobilization yield was around 80%. For veratryl alcohol oxidation, in the presence of hydrogen peroxide, both soluble and bound enzymes exhibited the same pH profile with an optimum near 2.5. Catalytic parameters (kc and Km) were seriously affected by immobilization. On the other hand, immobilization provided a noticeable stabilization of the enzyme against acidic pH and high temperatures. A 15-20 increase in the half-inactivation times at pH 2.2 and 2.7, respectively, could be observed. Bound enzyme was also much more thermostable than soluble.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02916412DOI Listing

Publication Analysis

Top Keywords

lignin peroxidase
8
immobilization
5
immobilization tool
4
tool stabilization
4
stabilization lignin
4
peroxidase produced
4
produced phanerochaete
4
phanerochaete chrysosporium
4
chrysosporium ina-12
4
ina-12 lignin
4

Similar Publications

Studies on the treatment of anaerobically digested sludge by white-rot fungi: evaluation of the effect of Phanerochaete chrysosporium and Trametes versicolor.

Microb Cell Fact

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.

Background: The composition of anaerobically digested sludge is inherently complex, enriched with structurally complex organic compounds and nitrogenous constituents, which are refractory to biodegradation. These characteristics limit the subsequent rational utilization of resources from anaerobically digested sludge. White-rot fungi (WRF) have garnered significant research interest due to their exceptional capacity to degrade complex and recalcitrant organic pollutants.

View Article and Find Full Text PDF

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

In silico analysis and gene expression patterns of lignin peroxidase isozymes in Phanerochaete chrysosporium.

Int J Biol Macromol

January 2025

Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India. Electronic address:

Phanerochaete chrysosporium (Pc), is a prominent lignin-degrading fungus which serves as an important source for lignin-degrading enzymes (LDEs). The present study was focused on a detailed in silico analysis and gene expression patterns of lignin peroxidases (PcLiPs), which is a significant class of LDEs. In spite of extensive research on P.

View Article and Find Full Text PDF

Azo dye wastewater has garnered significant attention from researchers because of its association with high-temperature, high-salt, and high-alkali conditions. In this study, consortium ZZ efficiently decolorized brown D3G under halophilic and thermophilic conditions. he results indicated that consortium ZZ, which was mainly dominated by Marinobacter, Bacillus, and Halomonas, was achieved decolorization rates ranging from 1 to 10% at temperatures between 40 °C and 50 °C, while maintaining a pH range of 7 to 10 for direct brown D3G degradation.

View Article and Find Full Text PDF

Metabolic mechanism of lignin-derived aromatics in white-rot fungi.

Appl Microbiol Biotechnol

December 2024

Graduate School of Agriculture, Faculty of Agriculture, Meijo University, Nagoya, Aichi, 468-8502, Japan.

Article Synopsis
  • White-rot fungi, like Phanerochaete chrysosporium, are essential for breaking down lignocellulosic biomass, which includes important components like cellulose, hemicellulose, and lignin, thus contributing to the carbon cycle.
  • These fungi use various enzymes—such as lignin peroxidases and cytochrome P450 monooxygenases—to degrade lignin and its derivatives, though more research is needed to fully understand the metabolic pathways involved.
  • The metabolic flexibility of these fungi allows them to adapt their enzyme production, specifically through the interplay of key pathways, enhancing their efficiency in degrading lignin for potential biotechnological applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!