Compounds with an imidazoline or guanidinium moiety elicit a variety of stimulatory and inhibitory cell responses in both central and peripheral tissues. Many of these effects are mediated by interaction with alpha-adrenergic receptors, but these molecules also selectively recognize other membrane-bound proteins with high affinity. We used a functionalized derivative of the imidazoline molecule cirazoline to visualize the imidazoline/guanidinium-receptive site (IGRS). 2-[3-Aminophenoxy]methyl imidazoline was radioiodinated and subsequently converted to the arylazide to generate the photoaffinity adduct 2-[3-azido-4-[125I]iodophenoxy]methyl imidazoline ([125I]AZIPI). Both 2-[3-amino-4-[125I]iodophenoxy]methyl imidazoline and [125I]AZIPI exhibited saturable high affinity binding in rat liver membrane preparations (Ki = 2-5 nM). In rat liver mitochondrial membranes, [125I]AZIPI photoincorporates into two peptides with apparent molecular weights of approximately 55,000 and approximately 61,000 as determined by SDS-polyacrylamide gel electrophoresis. The labeling of these two species is blocked by various competing ligands (10 microM) with a potency order expected for an IGRS. The photolabeling of both peptides is blocked by the imidazolines cirazoline and idazoxan or by the guanidinium guanabenz, but it is not altered by the alpha 2-adrenergic receptor antagonist rauwolscine or by the adrenergic receptor agonist epinephrine. Photoincorporation of [125I]AZIPI is minimally inhibited by the imidazoline clonidine or by the alpha 1-adrenergic receptor antagonist prazosin. However, the guanidinium ligand amiloride exhibits higher affinity for the M(r) = 61,000 peptide as compared with the M(r) = 55,000 peptide, suggesting that the two labeled species differ in their ligand recognition properties. An additional IGRS was identified by photolabeling in membranes prepared from PC-12 pheochromocytoma cells. In PC-12 membranes, [125I]AZIPI photolabels a major M(r) = approximately 61,000 peptide; the photoincorporation is blocked by cirazoline, guanabenz, and amiloride but not by idazoxan (competing ligands = 10 microM). These data indicate the existence of at least three subtypes of IGRS that differ in their ligand recognition properties, their apparent molecular weight, and their tissue distribution.

Download full-text PDF

Source

Publication Analysis

Top Keywords

high affinity
8
imidazoline [125i]azipi
8
rat liver
8
membranes [125i]azipi
8
apparent molecular
8
competing ligands
8
ligands microm
8
receptor antagonist
8
61000 peptide
8
differ ligand
8

Similar Publications

Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.

View Article and Find Full Text PDF

Stressors contributing to burnout among acute care and trauma surgery care teams: a systems-analysis approach.

Trauma Surg Acute Care Open

January 2025

Division of Healthcare Engineering, Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Background: Burnout negatively impacts healthcare professionals' well-being, leading to an increased risk of human errors and patient harm. There are limited assessments of burnout and associated stressors among acute care and trauma surgery teams.

Methods: Acute care and trauma surgery team members at a US academic medical center were administered a survey that included a 2-item Maslach Burnout Inventory and 21 workplace stressors based on the National Academy of Medicine's systems model of clinician burnout and professional well-being.

View Article and Find Full Text PDF

Exploring the shared mechanism of fatigue between systemic lupus erythematosus and myalgic encephalomyelitis/chronic fatigue syndrome: monocytic dysregulation and drug repurposing.

Front Immunol

January 2025

Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.

Background: SLE and ME/CFS both present significant fatigue and share immune dysregulation. The mechanisms underlying fatigue in these disorders remain unclear, and there are no standardized treatments. This study aims to explore shared mechanisms and predict potential therapeutic drugs for fatigue in SLE and ME/CFS.

View Article and Find Full Text PDF

Sialyltransferases (ST) are key enzymes found in, among others, mammals and bacteria that are responsible for producing sialylated glycans, which play critical roles in human health and disease. However, chemical tools to study sialyltransferases have been limited to non-covalent inhibitors and probes that do not allow isolation and profiling of these important enzymes. Here we report a new class of covalent affinity-based probes (AfBP) for ST by using ligand-directed chemistry (LDchem).

View Article and Find Full Text PDF

[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].

Se Pu

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!