The variation with pH of the kinetic parameters of penicillin acylase from Kluyvera citrophila has been used to gain information about the chemical mechanism of the reaction catalysed by the enzyme. The pH-dependence of log (V/Km) for penicillin G showed that a group with a pK value over 4.7 must be deprotonated and that a group with a pK value over 9.7 must be protonated in the free enzyme for activity. The solvent perturbation and temperature studies indicated that these groups are respectively of cationic and neutral acid type with ionization enthalpies of 29.7 and 111 kJ/mol. It was proved that penicillin G sulphoxide is a reversible linear competitive inhibitor with respect to the hydrolysis of penicillin G. The similarity of the pH profile and the magnitude of the pK values derived from the dissociation constant, Ki, suggest that both groups are concerned with the binding of penicillin G and its analogues to the enzyme. It is proposed that binding of substrate involves the formation of hydrogen bonds between the substrate and the essential ionizable groups in the enzyme which lie within the hydrophobic environment of the active site of penicillin acylase. This suggestion is supported by the finding that the profile of V (Vmax.) is similar to the V/Km profile, except that the low and high pK values are respectively shifted downward and upward due to the entry of substrate. Moreover, the bell shape of the V profile indicated that they are also essential in the catalytic steps subsequent to binding.
Download full-text PDF |
Source |
---|
Foods
December 2024
College of Food Science &Technology, Yunnan Agricultural University, Kunming 650201, China.
Chlorogenic acid (CGA), a polyhydroxy phenolic acid, has been extensively studied for its antimicrobial properties. () threatens food safety by forming biofilms. This study aimed to investigate the mechanism of CGA against and its biofilm.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
November 2024
College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China.
Colloids Surf B Biointerfaces
February 2025
School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China; School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, Ningxia 750021, China. Electronic address:
Penicillin G acylase (PGA) serves as a critical biocatalyst for the hydrolysis of penicillin G, yielding 6-aminopenicillanic acid, a vital precursor for β-lactam semi-synthetic antibiotics. The catalytic efficiency of PGA, however, remains suboptimal in native Escherichia coli strains. To improve this, E.
View Article and Find Full Text PDFGels
October 2024
JSC "Scientific Center of Anti-Infective Drugs", Almaty 050000, Kazakhstan.
Using free microorganisms for industrial processes has some limitations, such as the extensive consumption of substrates for growth, significant sensitivity to the microenvironment, and the necessity of separation from the product and, therefore, the cyclic process. It is widely acknowledged that confining or immobilizing cells in a matrix or support structure enhances enzyme stability, facilitates recycling, enhances rheological resilience, lowers bioprocess costs, and serves as a fundamental prerequisite for large-scale applications. This report summarizes the various cell immobilization methods, including several synthetic (polyvinylalcohol, polyethylenimine, polyacrylates, and Eudragit) and natural (gelatin, chitosan, alginate, cellulose, agar-agar, carboxymethylcellulose, and other polysaccharides) polymeric materials in the form of thin films, hydrogels, and cryogels.
View Article and Find Full Text PDFMol Microbiol
November 2024
Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.
Bacterial cell division is orchestrated by proteins that assemble in dynamic complexes collectively known as the divisome. Essential monofunctional enzymes with glycosyltransferase or transpeptidase (TPase) activities, FtsW and FtsI respectively, engage in the synthesis of septal peptidoglycan (sPG). Enigmatically, Salmonella has two TPases that can promote cell division independently: FtsI (PBP3) and the pathogen-specific paralogue PBP3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!